
AD-A140 884 A STUDY OF THE FEASIBILITY OF DUPLICRTING JRMPS 1/t
APPLICATIONS SOFTWRE IN THE ADA PROGRAMMING LANGUAGE
S NITRE CORP BEDFORD MR R G HOWE RPR 84 NTR-9167U LRSIFIED ESD-TR-84-i6@ Ft9629-84-C-0001 F/G 9/2 NLEEEEEEEEEEEEEE

EEEEEEEEEEEohE
EEEEEEEEEEEEEE
EohEEEEEEEEmhE
smEEEEEEEEEEEEu..-ommommomm

1111 __8_1_ 6
infl L3,

ILI -0

1I.25* 1j4 1.6

ESD-TR-84-160 MTR-9167

A STUDY OF THE FEASIBILITY OF
DUPLICATING JAMPS APPLICATIONS

0SOFTWARE IN THE ADA PROGRAMMING
cc LANGUAGE

0
l By

R. G. HOWE

oAPRIL 1984

Prepared for

DEPUTY COMMANDER FOR TACTICAL SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

8 DTIC
OELECTE D

Li.1

Project No. 4100

Approved for public release; I Prepared by
distribution unlimited. THE MITRE CORPORATION

Bedford, Massachusetts

Contract No. F19628-84-C-0001

84 05 07 0 1 g

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

JAMES C. GRAVES, ILt, USAF BERT J. HOPKINS, GM-13
TADIL J Systems Engineer Chief, Special Projects Division
Tactical Communication Systems Tactical Communication Systems

FOR THE COMMANDER

RICHARD M. DEMIUA
Asst System Program Director
Tactical Communication Systems Program Office

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGa

REPORT DOCUMENTATION PAGE
Il& REPONT SeCURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
21 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIUTION/AVAILABILITY OF REPORT

Approved for public release; distribution

ft DECLASSIFICATION/OOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMMERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MTR-9167
ESD-TR-84-160

S. NAME OF PERFORMING ORGANIZATION jb. OFFICE SYMSOL 7& NAME OF MONITORING ORGANIZATION

The MITRE Corporation 1(iipdeMj)

ft ADDRESS (City. SIb und ZIP Code) 7b. ADDRESS (City. SMtf and ZIP Code)

Burlington Road
Bedford, MA 01730

Sa NAME OF FUNDINGAJPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Deputy Commander (if wOeehu) F19628-84-C-0001
for Tactical Systems TCSR

S. ADDRESS (City. Stab ad ZIP Code) 10. SOURCE OF FUNDING NOS.

Electronic Systems Division, AFSC PROGRAM FROJECT TASK WORK UNIT

Hanscom APB,,MA 0 ELEMENT NO. NO. NO. NO.

-i. TITLE fi""I e cur.ity 116101180n1 4100
A STUDY OF THE FEASIBILITY OF DUPLICATING

12. PERSONAL AUTHORIS
R. G. Howe

13& TYPE OFREORT 1366 TIME COVERED 114. DATE OF REPORT (Yr.. N... Dlay) 1S. PAGE COUNT

Final Report FROM , T . 1984 April 86
I SUPPLEMENTARY NOTATION

17. COSATI CODE It SUaJECr TERMS (Camid o MwriIf meemu OW MelPY by -I amber)
P1 GROUP SUE. Gn. Ada Cocomo Cost Model

Ada Run-Time Environments Ada Feasibility
IAa Si fcePatl Estimtin JAMPS

IL ABSRACT (C ' Mu dM mw itaesuir ad iuenly by 6m a m er) 7 . sc-S

This document is a feasibility study of reimplementing the JAMPSAapplicationa softa .')

using the Ada programming language. Existing JAMPS software is written in C'O'language;
relaplesentation is under consideration to promote the reusability of the JAMPS software
and decrease JAMPS life cycle costs. Ads software development tools for the MC68000 nov
exist in rudimentary form, but, due to the inadequacy of run time environments and the
lack of validated compilers, these tools are inadequate for duplicating JAMPS software
at this time. However, the tools are expected to improve sufficiently that reimplementa-
tion in Ads might reasonably begin in FY85. Cost estimates result in a $4.5M pricetag;
manpower estimates and schedules are also included.

It WSISUIIONIAVAILASILITY 00 ASSTAACT 21. ASTRACT SICURITY CLASSIFICATION

UfeCLMSIPIEO/UNLIMITIO 0 SAME AS RPT. DTIC URS ' Unclassified

3 NAME OFW RISSPONISLE INOIVIOUAL 22 TELEPHONE NUMBER no. OFFICE SYMBOL
(Inachwi Arte Cde

Susan R,. Gilbert (617) 271-8088

PoTION OF1 JAN 1515 OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

- : + i I I n - •

UNCLASSIFIED
SSCUNITY CLASM P#CATION OP THIS FAGE

1i. (Coni't.) JAMPS APPLICATIONS SOFTWARE IN THE ADA PROGRAMMING LANGUAGE.

SSCURI1Y CLASSIFICATION OF THIS PAGE

m. , *%

EXECUTIVE SUNKARY

The existing JAMPS software, written in the "C" language, was

developed under severe budgetary constraints and without any consid-
eration of provisions for software reusability. Consequently, it
may be difficult to incorporate JAMPS software as an off-the-shelf
package in other Air Force systems. Reimplementation in Ada is
under consideration to promote the reusability of JAMPS software.

Ada software development tools (for the MC68000) currently
exist in rudimentary form, but are not considered adequate for

duplicating JAMPS software at this time. However, the tools are
expected to improve sufficiently that reimplementaton in Ada might
reasonably begin in FY85.

If, after appropriate Ada prograiming support tools become

fully available, there is serious interest in reusing JAMPS software
in several other Air Force acquisition programs, then it would be
reasonable to reconsider the possibility of duplicating JAMPS
software in Ada.

Once a contract has been awarded, it will take an estimated two

years to duplicate JAMPS software in Ada.

The total cost to duplicate JAMPS software in Ada is estimated
to be $4.5M (1983 dollars). An upper bound for the total cost of
reimplementation in Ada, based on some pessimistic assumptions, is

$6.3M.

Aooession For

NTIS GRA&I
DTIC TAB
Unannounced
Justificatio

Distributiton/Availability Codes

Avail and/or

Dist Special

LD
b

n/Cide

AcKOWLEDGfKETS

The author wishes to thank the following individuals for their
generous support and ideas throughout the preparation of this
report.

Mr. P. R. Bigelow
Mr. V. D. Brentano
Mr. D. P. Crowson
Mr. E. C. Grund
Mr. V. E. Miller, Jr.
Mr. W. G. Neumann
Mr. C. D. Poindexter

The author is especially grateful to Mr. D. J. Criscione who recoded
a representative example of JAMPS "C" code using Ada, and to Ms. P.
L. Hintz who provided the JAMPS sizing data included in this
document.

The document has been prepared by The MITRE Corporation under
Project 4100, Contract F19628-84-C-O00l1. The contract is sponsored
by the Electronic Systems Division, Air Force Systems Coumma nd,
Hanscom Air Force Base, Massachusetts.

2

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS

LIST OF TABLES

INTRODUCTION 9

1.1 BACKGROUND 9
1.2 JAMPS HARDWARE CONFIGURATION 10
1.3 FUNDAMENTAL CONCEPTS OF THE EXISTING 10

SOFTWARE ARCHITECTURE FOR JAMPS
1.4 ASSUMPTIONS 13
1.5 CONCLUSIONS 16
1.6 RECOMMENDATIONS 18
1.7 SCOPE 18

2 FEASIBILITY OF DUPLICATING JAMPS SOFTWARE IN ADA 19

2.1 AVAILABILITY OF ADA COMPILERS FOR MC68000 19
2.2 AVAILABILITY OF ADA PROGRAMMING SUPPORT 20

TOOLS FOR MC68000
2.3 APPROPRIATENESS OF EXISTING ADA RUN TIME 20

ENVIRONMENTS

2.3.1 Ada Run Time Enviroument Defined 23
2.3.2 Formal Requirements for Ada Run 23

Time Envirorments
2.3.3 Optional Features for Ada Run 24

Time Environments

2.3.4 Preliminary Selection of Run 25
Time Environments for JAMPS

2.3.5 Comparison of JAMPS Requirements 26
Versus Characteristics of Selected
Ada Run Time Environments

3

TABLE OF CONTENTS (Continued)

Sectiom Page

2.4 PREDICTED RUN TIME PERFORMANCE 32

2.4.1 Benclmark Measurements to Determine 32
Execution Times

2.4.2 Context Switching Times 32
2.4.3 Memory Utilization 34

2.5 COMPILER RELIABILITY 34
2.6 PHYSICAL LIMITATIONS OF THE TELESOFT 35

COMPILER

3 COST FACTORS 36

3.1 SYSTEM REQUIREMENTS SPECIFICATION 36
3.2 CONTRACT MONITORING SUPPORT 37
3.3 SOFTWARE REUSABILITY 37
3.4 TRAINING 38
3.5 SOFTWARE DEVELOPMENT FACILITIES 38
3.6 SOFTWARE ARCHITECTURE 39
3.7 TESTING 39
3.8 PERFORMANCE MEASUREMENTS 40
3.9 REDESIGN OF PROGRAMS WHICH GENERATE 40

"SOURCE TAPES"
3.10 CONFIGURATION MANAGEMENT 40

4 ESTIMATES OF THE LINES OF ADA SOURCE CODE TO 42
BE DEVELOPED

4.1 SIZING ANALYSIS FOR EXISTING JAMPS SOFTWARE 43
4.2 ADJUSTMENTS 43
4.3 A REPRESENTATIVE EXAMPLE OF "C" RECODED 46

IN "ADA"
4.4 ESTIMATES OF THE NUMBER OF ADA SOURCE 47

STATEMENTS TO BE DEVELOPED

5 ADA IMPLEMENTATION PLAN 49

5.1 MANPOWER REQUIREMENTS 49
5.2 SCHEDULE REQUIREMENTS 54

4

'i,. , , , ;. .-" . %-.--- . *.- - •

TABLE OF CONTENTS (Concluded)

Section Page

6 COST ESTIMATION 57

6.1 METHOD 1: ESTIMATED MANPOWER REQUIREMENTS 57
MULTIPLIED BY ASSUMED LABOR RATES

6.2 METHOD 2: COST ESTIMATION VIA THE COCOMO 60
MODEL

7 ADVANTAGES AND DISADVANTAGES OF REIMPLEMENTING 64
JAMPS SOFTWARE IN ADA

7. I ADVANTAGES 64
7.2 DISADVANTAGES 64

REFERENCES 65

APPENDIX A A REPRESENTATIVE EXAMPLE OF JAMPS CODE 57

REWRITTEN IN ADA

5

~ ~ - * -. %*%'!

LIST OF ILLUSTRATIONS

Figure Page

1 JAMPS ORD System Diagram 11

2 Long Haul Interface 12

3 Data Base Initialization Procedures for JAMPS 14

4 Comparison Between Work Breakdown Structure for a 52
Typical Medium Sized Acquisition Program (based
on an HOL other than Ada) with the Work Breakdown
Structure Assumed for Duplicating JAMPS Software
Using Ada.

5 GANTT Chart for Duplicating JAMPS Software in Ada 55

6

LIST OF TABLES

Table Page

1 Survey of Existing Ada Programming Tools for 21
MC68000

2 Comparison of JAMPS' Requirements Versus Capa- 27
bilities of Existing Ada Run Time Environments

3 Benchmark Test Results Using the Sieve of 33
Eratosthenes

4 Sizing Analysis for Existing Software Written in "C" 44

5 Sizing Data with Adjustments 45

6 Conversion from "C" to Ada 47

7 Estimates of Source Statements of JAMPS Source Code 48

to be Developed in Ada

8 Ada Implementation Plan 50

9 Optimistic Cost Estimate 58

10 Pessimistic Cost Estimate 59

11 Inputs to Cocomo Model 61

12 Results from Cocomo Model 62

7

-- ~ _L L1 - - - -IV, . - ~~~

SECTION 1

INTRODUCTION

1.1 BACKGROUND

JINTACCS is an acronym for the Joint Interoperability Tactical
Command and Control Systems. The JINTACCS Automated Message
Processing System, JAMPS,1's a portable set of computer-controlled
equipment for assisting a group of collocated operators in composing
and exchanging.JINTACCS messages. It provides each operator with a
work station for composing messages and interface equipment for
sending and receiving messages over a long-haul communications link,
as well as for sending messages to and receiving messages from other
operators in the local group."

Prototype versions of JAMPS have been designed and built by The
MITRE Corporation. JAMPS has undergone compatibility and inter-
operability testing and operational effectiveness demonstrations
(OED) during military exercises. As a result of these exercises, it
was decided that the principal processing component, the DEC 11/23,
should be replaced with a Motorola MC68000-based computer and a
faster disk to overcome response time problems and generally improve
system performance. The JAMPS software, written in the "C" language
and executed under the UNIX* operating system, is being transported
to the MC68000 at this time.

Approximately a dozen Air Force organizations have expressed
interest in reusing JAMPS software (but not necessarily the hard-
ware) in other military systems. Inasmuch as the "C" language is
not approved for use in DoD acquisition programs and because the use
of Ada will soon become mandatory in many types of defense systems,
the Electronic Systems Division of USAF has asked MITRE to investi-
gate the feasibility of duplicating JAMPS software in the Ada
language. This document, prepared in response to ESD's request,
includes estimates for the time, money, and manpower required to
rewrite JAMPS software in Ada. It also presents the advantages and
disadvantages of undertaking such an effort. This investigation was
jointly funded by Project 4100 (JAMPS) and Project 572D (Ada transi-
tion planning associated with the Computer Resources Management
Program PE64740F) and consequently is more thorough than might
otherwise be expected if sponsored by Project 4100 alone.

*UNIX is a trademark of Bell Laboratories.

9

.. .- . -, %Xq. ':'2. _ A. _ U. .i d.

1.2 JAMPS HARDWARE CONFIGURATION

There are two types of JAMPS hardware:

1. Work station

2. Information distribution network

The work station hardware to which the JAMPS system is now
transported is for operational demonstration of the JAMPS concept.
It will provide better response time performance and greater storage
capacity than the demonstration hardware used in previous
operational tests.

The upgraded work station includes the following hardware
elements:

o MC68000 computer, 0.5 Mbyte main memory

o Display

o Keyboard

o Storage Device (40 or 70 megabyte Winchester disk drive)

o Printer

o Q-bus interface hardware

o DEC DLVII-E asynchronous line interface

o DEC DLVII-J four-part RS-232 multiplexer

o Floppy disk drive; 8-inch, .1 Mbyte floppy disks

o Diagnostic firmware and control panel

Figures 1 and 2 depict the hardware configuration.

1.3 FUNDAMENTAL CONCEPTS OF THE EXISTING SOFTWARE ARCHITECTURE FOR
JAMPS

All valid JINTACCS message types and formats are under
configuration control by the Army. Information pertaining to
JINTACCS message types and formats is being supplied by the Army on
a magnetic tape (i.e., the "JINTACCS Tape") to the Data Processing
Center at Langley APB, Tactical Air Command (TAC). At the center

10

LONG HAUL LINK

GATEWAY
DEIC

STATION TRIA

LOCAL

BUS

DEIC

STATION I TERNINAL

PRNE

Figure 1. JA)WS ORD System Diagram.

Q-BUS TO
WORK STATION
COMPUTER

ASYNCHRONOUS

LINE INTERFACE
IN VIDEO TERMINAL

20MA/EIA
SELECTION

/ RS-232
SWITCH

-// INTERFACE
= CABLE

EIA TO MIL-STD-188C EIA TO 20MA
LOW LEVEL CONVERTER CONVERTER

MIL-STD-188C MIL-STD-188C RS-232C
LOW LEVEL HIGH LEVEL (EIA)

(20MA)

*LONG HAUL DATA LINK PORTS

Figure 2. Long Haul Interface

12

..i - .-.-. ,. v

it is reformatted by an off-line batch program on the PDP-11/70,
yielding another kind of tape, known in the JAMPS community as "the
source tape" (figure 3). This "source tape" serves as the primary
form of input to JAMPS off-line programs. There is concern that the
continued existence of JAMPS may be jeopardized if the Army were to
stop producing JINTACCS tapes or if the Langley Data Processing
Center were to discontinue the maintenance of the program which
reconstructs the JINTACCS data on "source tapes." The JAMPS project
personnel would prefer to input the JINTACCS tape directly,
bypassing the Data Processing Center at Langley AFB altogether.

Off-line (IBLD) programs in JAMPS read the "source tape" while
generating object data base files for the disk contained in each
work station. Other off-line JAMPS software checks the consistency
and completeness of this disk-resident data. When it is determined
that the disk-resident files are properly populated, the operator is
permitted to load and enable the on-line programs used in real time
operations. The JAMPS on-line software provides real time display
and communication capabilities. The large disk-resident files which
are generated off-line remain unchanged during on-line operations.
Successful operation of the on-line functions depends on the
existence of an error-free data base on disk. Error checking of the
data in disk-resident files is not performed on-line because this
would degrade response-time performance. One of the most signifi-
cant features of JAMPS Is that the off-line and on-line programs
need not be modified as the result of changes to JINTACCS message
types and formats.

During the past year, considerable effort has been expended to
measure computer resource utilization by JANPS on-line programs.
As the result of these efforts, it has been determined that the
responsiveness of the on-line software is being impaired because of
excessive disk-access requests. To remedy this situation, MITRE
personnel have proposed (along with other modifications) that the
disk-file structures be reorganized in a more efficient manner.

1.4 ASSUMPTIONS

o Duplicating JAMPS software using Ada will be accomplished as
an acquisition effort by a contractor.

o The Ada software for JAIPS will be procured in accordance
with 300-series regulations. If the normal ESD procurement
practices (800-series regulations) were followed instead,
the software development cost estimates shown herein should
be increased rather substantially, perhaps even doubled.

13

IC MI

--J2 ! ",.W' U

I uI a I
I I

a Ij
ti U ..

z I

0

- 1 Figure 3. Data Base .Initializ-aton Procedures for JAMPS

14

I UI

o The development of software in Ada will not be on a
critical-path schedule for JAMPS because the existing
software vritten in "C" will have already been transported
to the MC68000.

o The requirements baseline used by the contractor will
include the existing MITRE documentation for JAMPS, with

amendments 1) to update the operator-interface description,
2) to include requirements for response-time performance and
excess processing capabilities (e.g., for future growth),
and 3) to include new requirements for a local area network.

o The contractor will receive considerable support from the
Air Force in interpreting the system requirements.

o The existing allocation of functions between hardware and

software in JAMPS will remain unchanged during the
reimplementation using Ada. Therefore, only C level (not A
or B level) documentation need be prepared by the
contractor.

o The current hardware configuration, including the MC68000
computer, will be the basis for software development in Ada,
and the main memory of the computer will be Increased to 1-
megabyte capacity.

o The off-line programs used by the Data Processing Center at
Langley AFB to process the JINTACCS tape will be modified by
the government to produce a new type of "source tape" format
which substantially reduces the complexity of the off-line
(IBL) programs in JAMPS; it is assumed that existing JAMPS
off-line functions which heavily utilize YACC and LEX
functions will not be duplicated In Ada.

o Major emphasis will be given to software reusability during
the reimplementation in Ada, and this will increase the
contractor's costs for software development by 20%.

o The TCP/IP communications handlers available in the Berkeley
UNIX 4.2 (estimated to be 6500 lines of "C" source code) can

easily be incorporated into either the UNIX or the ROS
operating systems used in the two alternative Ada Run Time
Environments available today from Telesoft Corporation.

o The JAMPS software architecture will be fully redesigned by
the contractor in order to take maximum advantage of
desirable features inherently available in the Ada language.

15

11,3111 1 J 6 1

o The number of source statements to be developed in Ada can
be predicted accurately by applying conversion factors,
based on the results from a recoding experiment, to
extrapolate from the actual sizing data for the existing
software written in "C".

o Programmer productivity in Ada will be moderately less than
that with other higher order languages.

o As an early user of Ada, the JANPS project is liable to
attract widespread attention within ESD; therefore, the
level of effort for contract monitoring support will be
larger than normal for an undertaking of this size.

1.5 CONCLUSIONS

o The current status of Ada programing support environments
for eC6800, Including but not limited to Ada compilers,
is not adequate for duplicating JAMPS software in Ada today.
However, the programing tools available from one software
vendor, Telesoft, are expected to improve sufficiently over
the next year so that the ase of Ads for JAMPS can be
undertaken in FY85. The Ada programing support tools
currently offered by a second software vendor, Irvine
Computer Sciences Corporation, are judged to be less
adequate than those of Telesoft at this time, but will
be of potential interest if redevelopment of JAMPS software
in Ada begins late In FY85.

o The feasibility of using Ada to duplicate JAMPS software
will be determined largely by the characteristics of the
particular compiler implementations (and Ada run time
environments) for the MC68000; the Ada language itself is
not the problem. Certain optional features need to be added
to the existing Ada run time environments in order for any
of these environments to be amenable for use in the JAMPS
application. The development schedules for such
enhancements are not known precisely, but it is our
assessment that the necessary improvements will have been
completed by FY85.

o The total cost to duplicate JANPS software in Ada is
estimated to be $4.5M (1983 dollars). This estimate
includes work to be performed by a software contractor,
contract monitoring support, software redesign by the Data
Processing Center at Langley AFB, consulting services, and

16

., g -

the acquisition of appropriate computing facilities and
programming support tools for Ada software development. An
upper bound for the total cost for relmplementation in Ada,
based on various pessimistic assumptions, is $6.3M.

o The existing JAMPS software written in "C" will be awkward
to modify for use in other systems because the record
formats for disk files are not explicitly defined (in "C"
source code) and are only partially described. In
addition, the "C" software was not developed with reusa-
bility in mind, and therefore machine dependencies, compiler
dependencies, and run time environment dependencies have not
been carefully isolated and encapsulated in separate modules
with appropriate annotations and documentation.

o The reliability of object code generated by incomplete
versions of the compilers currently available for the
NC68000 is fairly good.

o Early indications suggest that the response-time performance
of Ads-compiled programs in the MC68000 will be satisfactory
for use in JAMPS.

o A separate Ada software development facility will be needed
for JAIIPS; the memory size of the JAMPS MC68000 (and disk
unit) is not adequate for an Ads compiler which must have
access to extensive software libraries (source/object code).

o Software development in Ada on the MC68000 will be impeded
by the unavailability of suitable tools for configuration
control and performance measurement, and therefore the Air
Force will be obliged to develop its own tools for these
purposes.

" JAMPS offers an unusually good situation for early use of
the Ada language because the system already exists and any
reimplementation in Ada will not be driven by the tight
development schedules which often characterize ESD procure-
ment efforts. The amount of code to be developed in Ada is
far less than the average size C31 system. The potential
for reuse of JAMPS software in other systems is unusually
high.

" The investment to date in "C" language software for JAMPS is
very substantial (15 nan-years of MITRE effort and 5 man-
years of Air Force personnel time), perhaps 3 man-years of
which would be recoverable If JAMPS software were to be
reinplemented in Ada.

17

- **, -- -qd

1.6 RECOIQKNDATIONS

o Do not undertake an effort to duplicate JAMPS software in
Ada until such time as a suitable compiler with an
appropriate run tine environment is fully available and has
been validated by the Ada Joint Program Office. In
addition, other necessary Ada programming support tools
should also be readily obtainable.

1.7 SCOPE
The remainder of this report is organized into four major

sections as follows:

o Feasibility of duplicating JAMPS software using Ada

o Estimated number of source statements of Ada to be developed
for JAMPS

o Manpower, schedule, and cost estimates

o Advantages and disadvantages of reimplementing JAMPS
software in Ada.

18

SECTION 2

FEASIBILITY OF DUPLICATING JAMPS SOFTWARE IN ADA

Issues surrounding the feasibility of duplicating JAMPS

software in Ada are presented in the following order:

o Availability of Ada compilers for the MC68000

o Availability of Ada programing support tools for the
NC68000

o Appropriateness of existing Ada run time environments

o Predicted run time performance

o Compiler reliability

o Physical limitations of Telesoft's Ada compilers

2.1 AVAILABILITY OF ADA COMPILERS FOR THE MC68000

Telesoft Corporation[2] and Irvine Computer Sciences
Corporation (ICSC)[3] are the only firms which have formally
announced the availability of Ada compilers for the MC68000. The
Telesoft and ICSC Ads compilers do not presently support the full
Ada language and therefore are not ready to be validated by the Ada
Joint Program Office. Accordingly, these compilers are unsuitable
for use in DoD acquisition programs (per draft DoD Directive
5000.31[41). However, both Telesoft and ICSC claim that their
compilers will be ready for validation in 1984.

As will be explained further on, Telesoft has many different
versions of the Ada compiler for the MC68000 and not all of them
appear to be suitable for the JAMPS application. The order in which
the many different versions of the Telesoft compiler will reach
completion and undergo validation tests is unclear. It is entirely
possible that some of the Telesoft compiler versions will never be
fully developed and therefore will never be validated. Finally,
there is only one version of the ICSC Ada compiler for the MC68000
and its development schedule is also undetermined.

19

2.2 AVAILABILITY OF ADA PROGRAMMING SUPPORT TOOLS FOR MC68000

DoD has issued a nonbinding set of guidelines[6 1 for support
tools to be used in conjunction with compilers for Ada software
development. In table 1, these DoD guidelines are compared with the
tool capabilities offered by Telesoft and by ICSC for the MC68000.
This information in table 1 is based upon sales brochures and
telephone communications with marketing representatives. It appears
that the lack of tools for configuration control and performance
analysis (static and dynamic analyzers) will significantly hinder
any attempts to duplicate JAMPS software in Ada. Such tools could
be procured directly from a software vendor, but this would
significantly increase the budget required for recoding of JAMPS
software in Ada.

2.3 APPROPRIATENESS OF EXISTING ADA RUN TIME ENVIRONMENTS

JAMPS software can easily be recoded in Ada. Nevertheless,
recoding in Ada may not be a practical course of action. The
appropriateness of the existing Ada run time environments, more than
anything else, will determine the feasibility of duplicating JAMPS
software using Ada. As a programing language, Ada has eliminated
many of the fundamental design choices which traditionally have been
made by applications software designers. Although the syntax of the
Ada language has been rigorously standardized, many of the features
of Ada run time environments have been left to the discretion of the
individual compiler designer. For this reason, the selection of a
compiler based on an inappropriate run time environment can kill a
project before a single line of applications code has been written.
The question "can we use Ada" is meaningless because there are many
degrees of freedom in the design of Ada compilers. It is more
reasonable to ask "can we use a specific compiler (i.e., one of the
many different Ada Telesoft compilers or the ICSC compiler targeted
to the NC68000) for the JAMPS project?"

The ensuing discussion of run time environments is organized as
follows:

o Definition of "Ada run time environment"

o Formal requirements for Ada run time environments

o Optional features for Ada run time environments

o Comparison between JAMPS' needs versus capabilities available
with existing Ada run time environments

20

Table 1

Survey of Existing Ada Prograiming Support Tools for NC68000

Telesoft/LabTek ICSC
Software Tool Status Status

Text Editor (for Available now from Available now
entering and modi- Telesoft
fying Ada source code)

Pretty Printer (for Available now from Unavailable
printing text in leg- LabTek with WICAT
Ible formats) version of MC68000

Compiler (for trans- Available in partial Available now in
lating Ada source code form now; should be partial form;
into object code for fully available in should be fully
execution on MC68000) 1984 available in 1984

Linkers (for resolving Available now from Available now
interfaces between Telesoft from ICSC
separately compiled
modules, forming
executable programs)

Loaders (for loading Available now from Available now
executable programs Telesoft.
in both host and
target computers)

Symbolic debugger (for Under development at Not available;
snapshots, traces, etc.) Telesoft; due for not in develop-

delivery in 1984. ment.

Static analyzer (for Not available; not Not available;
data item set-use currently in develop- not in develop-
listings, cross- ment. ment.
reference maps,
calling relationships)

Dynamic analysis tools Generally not avail- Not available;
(frequency analyzer, able; LabTek offers a not in develop-
timing analyzer) simple routine for ment.

measuring single-thread

execution times.

21

Table 1 (Concluded)

Survey of Existing Ada Programming Support Tools for MC68000

Telesoft/LabTek ICSC
Software Tool Status Status

Terminal Interface Available now from Available now
Routines Telesoft

Command Interpreter Available now from Available now
(accepts commands Telesoft
to invoke tools)

Configuration Manage- Not available; not Not available;
ment Tools currently in develop- not in develop-

ment ment

Stub Generator (to Not available; not Not available;
insert dummy program currently in develop- not in develop-
elements ment ment

22

N' ' ' "d IV, IV"' ' .. " . % *. " , " . % " . • " . - * - " " " .m

2.3.1 Ada Run Time Environment Defined

The following material is quoted from "The Ada Run Time
Environment," a lecture given by Dr. Joseph K. Cross, Sperry UNIVAC,

V at an AdaTEC Meeting, held in Dallas, Texas, on 20 October 1983:

"An Ada run time environment is, roughly, the set of
target-machine facilities that an Ada compiler can use to carry out
the run-time operations required by Ada programs. Those facilities
consist of the instruction set provided by the physical target
machine, possibly with additions and deletions. Additions to the
facilities provided by the physical target machine's instruction set
are generally provided by some predefined software, such as an
executive, that in the compiler's eyes, might as well be implemented
in hardware. Other additions to the physical target machine-s
facilities can be provided by additional hardware, such as an array
processor, and by user microcode. Deletions from the physical
target machine's facilities generally result from a conscious
decision not to use some capability, generally in the interest of
safety or simplicity. For example, after it had been decided to use
a certain executive in the target machine, it might be determined
that all code emitted by the Ada compiler will only run in the task
state; then, the privileged instructions in the hardware's
instruction set would not be usable by the Ada compiler, and would
therefore not be part of the run time environment."

"After the target hardware has been chosen [i.e., the MC68000],
after any predefined software [i.e., UNIX operating system, math
routines, etc.] have been specified, and after all restrictions and
conventions have been imposed, the compiler sees as a new target
machine the virtual target machine for which all code is actually to
be emitted. To the compiler, this virtual target machine is as
different from the original physical target as if it were a
different box: for example, the virtual box may have a SINE
instruction while the physical machine did not, and the physical
machine might let any register be used as a stack pointer while the
virtual machine reserves register 15 for that purpose."

2.3.2 Formal Requirements for Ada Run Time Environments

The Ada Language Reference Manual[6] levies a minimal number
of requirements on run time environments. These requirements are
summarized as follows:

o Operations -- (e.g., addition, comparison, assignment,
indexing) on various kinds of values (e.g., integer,
floating and fixed point Boolean, record, array). Branches
(GO TO, IF, CASE, LOOP, Subprogram CALL, and Return) are
also required.

23

* . ,..- ,,.... , ... , .

o Taskin -- (creation/destruction of tasks, activation/
abortion/termination of tasks, execution (start/stop) and
rendezvous (simultaneous synchronization and data

interchange)).

o Input/Output -- (sequential, direct access, text, and
low-level I/0).

o Exception Processing - (Ada requires that certain errors be
detected at run-time, such as an attempt to assign the value
11 to a variable that has been declared to hold only values

between 1 and 10. Such a run-time error is called an
exception, and the result of an exception is to transfer
control to a user-specified exception handler).

o Memory Management -- (ability to store and retrieve values).

2.3.3 Optional Features for Ada Run Time Environments

This section provides examples of the facilities that a
run time environment may provide over and above those that are
required as described in section 2.3.2. The list is illustrative
and does not attempt to exhaust the full set of possibilities.

o Interrupt Handling. In Ada, an interrupt is treated like an
entry call from an invisible task of very high priority.
Hence a run time environment can satisfy the letter of the
law by treating interrupts just like any other tasking

operation. In some cases, JAMPS might need some form of
expedited dispatching for such things as character-echo at
the display console; interrupt handling tasks may be given
control directly upon receipt of the interrupt, and without
intervening enqueuing, scheduling decision, and dequeuing of
a request. Also, advantage may be taken of the hardware
register-saving capabilities.

o Fancy Memory Management. Use of overlays, nonresident data,

and garbage collection.

o Distributed Processing and Multiprocessing. The virtual
machine on which an Ada program runs may have more than one
processor; the Ada language definition leaves these issues
up to the compiler designer.

o Multiprogramming. Various processing priorities may be
assigned individually to Ada task programs and the run time
environment may provide preemptive scheduling capabilities.

24

o Fancy I/0. Asynchronous I/O, formatted I/0, use of key

words.

2.3.4 Preliminary Selection of Run-Time Environments for JAMPS

At the outset, there are four versions of the Telesoft Ada
compiler to be considered. These four versions are differentiated
on the basis of their respective run time environments as follows:

o P-code interpreter under the UNIX operating system

o P-code interpreter under the ROS operating system

o Machine code executed under UNIX (analogous to the ICSC
compiler)

o Machine code executed under ROS

Two versions of the Telesoft Ada compiler generate P-code (a
Pascal derivative). The front-end of the compiler generates P-code
on a host computer (VAX, IBM 370, or MC68000) and this intermediate
form is then downloaded into the target computer (the MC68000 in
JAMPS) where it is interpreted on-line by the "Run Time Kernel"
(i.e., run time environment software). This means that the final
part of translation and execution occur more or less simultaneously.
For real-time applications, the use of an interpreter in an Ada run
time environment would be a mistake; the response-time performance
with an interpreter would be intolerably slow.

Two more recent versions of the Telesoft-Ada compiler plus the
ICSC compiler all emit low-level (machine language) outputs. These
compilers convert Ada source code into object programs in machine
language form which can then be downloaded (from the host) into the
target computer for execution under the control of an Ada run time
environment. This second type of compiler is potentially of
interest for use in development of software for JAMPS.

Telesoft provides two different run time environments based on
the UNIX and the ROS operating systems, respectively. Programs
compiled via the ICSC-Ada compiler will only execute under UNIX.
Telesoft-UNIX requires a lot more memory (260 Kbytes) than ROS (80
Kbyte.) in the target computer. UNIX is reputed to be significantly
slower and more unwieldy for real time applications than ROS.
Nevertheless, the use of UNIX in other systems is so widespread that
in the interest of promoting widespread reusability of JAMPS
software, the run time environment based on execution of machine
code under UNIX should be seriously considered.

25

2.3.5 Comparison of JAMPS Requirements Versus the Characteristics
of Selected Ada Run Time Environments

Table 2 shows a comparison between JAMPS requirements versus
capabilities available with various Ada run time environments. It
is assumed that the JAMPS program will have been compiled into
machine language format. It Is further assumed that all of the
formal requirements for an Ada run time environment (see section
2.3.2) will have been satisfied by the time any Ada compiler is
validated by the Ada Joint Program Office. Hence, only the optional
features (such as those mentioned in section 2.3.3) need be care-
fully analyzed in this report. Unless stated otherwise in table 2,
the characteristics of the ROS- and UNIX-based run time environments
are believed to be the same.

Inspection of table 2 will reveal that even the most promising
of the Ada run time environments (i.e., Telesoft's environment which
controls the execution of machine code under ROS) does not come
close to satisfying the needs of JAMPS at this time. However, since
Telesoft claims that it plans to implement new features which will
rectify most of the deficiencies noted herein, it will be reasonable
to reevaluate the situation in six to nine months* . The current
status of the ICSC run time environment suggests that it will not be
ready for use by JAMPS programers for quite some time. The
Information shown in table 2 is based on telephone conversations
with representatives of Telesoft and ICSC, and cannot easily be
substantiated because published reports describing the features of
the various alternative run time environments are not available from
the vendors.

*Telesoft, a relatively small software house, is believed to have a
current backlog of 20 contracts for retargeting its Ada compiler to
various different types of computers. It appears that Telesoft is
not I a position to undertake an additional contract in the
phoryterm to develop a customized run time environment for JAMPS.

26

Table 2

Comparison of JAMPS' Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Environment

Task Management No capabilities for
Requirements See below tasking at this

time. Future plans
for task management

are undefined.

Multiprogranming Not available at this
time; the Priority Pragma
is supposed to be imple-
mented with ROS during
1984.

No restrictions on Currently limited to 32
the number of dif- tasks; this restriction is
ferent separately- is due to be removed in
scheduled tasks 1984.

Multitasking Supports sharing of data
and pointers between tasks
(at most, 256 words can be
exchanged).

Expedited dis- Currently available, with
patching (character 100 usec delay as an upper
echo) bound.

No restrictions on Currently, individual pack-
size of packages, ages are restricted to 32
tasks, subprograms Kbytes, but this limitation

is expected to be removed
during 1984.

No restrictions on "Main" programs cannot
the number of "main" run concurrently; restrict-
programs, with pro- ed to one 32-bit word for
visions for commu- communication between two
nicatlons between main programs.
"main programs."

27

.%

Table 2 (Continued)

Comparison of JAMPS' Requirements Versus Capability
of Existing Ads Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Environment

Memory Management
Requirements:

Detection of 801 Not available. JAMPS Not available
saturation of software designers must
dynamic memory areas provide a workaround

in their applications
software.

No restrictions on Currently, dynamic Unknown
number of levels memory is exhausted
of nested pro- after four levels of
cedures nesting (when machine

runs out of registers
used for this purpose).
The compiler is being
redesigned to circum-
vent this limitation.

No arbitrary limit Currently fixed at No restrictions
on dynamic memory 4 Kbyte/task, 32 Kbytes/ on dynamic memory
space allocated to package. In subsequent space.
individual task compiler releases, the
programs. programmer will be

permitted to statically
assign as such dynamic
memory space as his
program requires.

File lock/unlock Can use Ada's Rendez- Same as for
services vous construct for this Telesoft.

purpose.

28

*1b

Table 2 (Continued)

Comparison of JAMPS' Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Environment

No restrictions on Not currently avail- Same as for
memory space for able, but restriction Telesoft.
Access Types as is due to be removed
seen by individ- during 1984.
ual packages, tasks,
subprograms

Disk-file access Currently available. Currently avail-
either by serial able.
or by indexed-
sequential addres-
sing techniques.

Operations

Data manipulation Currently supported. Unknown
capabilities for
two dimensional
arrays.

Can perform opera- Currently supported. Unknown
tions on disk records
without having to
move them from 1/O
buffer areas before
hand.

Desirable feature: Not supported.

Can perform opera- Low-level I/O
tions on low-level buffer space is
I/0 data (e.g., limited to 8 Kbytes.
communications
data) without
having to move the
data from the I/0
buffer areas before-
hand.

29

Table 2 (Continued)

Comparison of JAMPS' Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Enviroment

I/O Management
Requirements

Asynchronous I/O Currently available. Not currently
for character and available.
block-oriented
devices.

Text I/O Currently available. Currently available.

Low-level I/O Currently available. Currently available.

Device driver for Not currently available.
a telephone modem
connection.

Other device drivers Currently available. Unknown
(floppy disk, CRT,
Winchester disk)

Date/time Support Currently available; Currently available.
time to nearest second.

Disk I/O driver Currently available. Unknown
accommodates indi-
vidual records which
are up to 8 Kbytes
in length.

System Initializa-
tion Requirements

Flush out of I/O Not available. Not available.
buffer areas (de- Programs which rely upon
sirable feature but use of uninitialized
not a requirement) variables are erroneous.

30

*&i ...

Table 2 (Concluded)

Comparison of JAMPS' Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Environment

Capability for Unknown Unknown
assigning logical
units to physical
devices (consoles)

Optimization Support

Can optimize run Currently available Unknown
time system either with ROS
for faster execu-
tion or for reduced
memory use.

Ability to interface Pragma Interface to Currently avail-
Ada-compiled pro- to other languages able.
grams with other is not supported; nor
programs written in are there any ismediate

"C" language; al- plans to implement this
though not an Pragma.
absolute necessity,
this feature is
highly desirable.

Ability to use in- In-line Pragma is not Unknown
line code in lieu currently available but
of procedural calls is supposed to be
to the run time supported in 1984.
environment.

Suppression of Range The Suppress Pragua is Currently avail-
Checks in order to currently supported able.
improve response by Telesoft's compiler.
time performance.

31

2.4 PREDICTED RUN TIME PERFORMANCE

The expected performance of Ad-compiled programs in the
embedded NC68000 computer is a matter of paramount concern. Some of
the early Ada compiler implementations are reputed to produce very
inefficient object code. There are no formal requirements placed on
Ada compilers for object code efficiency.

Run time performance vii be discussed as follows:

o benchmark measurements to determine execution times

o Context switching times

o Nemory use

2.4.1 benchmark Measurements to Determine Execution Times

One very popular yardstick for comparing the performance of
higher-level languages in various microcomputers is a simple
benchmark program based on the Sieve of EratoSthenes[7]. This
program finds all of the prime numbers between 3 and 16381.

The benchmark test results shown in table 3 are only one crude
indication that Telesoft's Ada/ROS compiler implementation will
satisfy the response time requirements for JAMPS. It is assumed
that the existing software written in "C" language will perform
satisfactorily In the MC68000 and that on the basis of the timing
data shown in table 3, the C code and Ada/ROS programs can be
expected to run roughly at the same speed. It is unknown just how
much degradation in response time performance can be expected if lOS
were to be replaced by UNIX.

2.4.2 Context Switching Times

The time required to respond to an interrupt, suspend the
current task and schedule the execution of another task is referred
to as "context switching time." In clumsy run time enviroments
based on operating systems intended for use in software development
systems (i.e., not for use in real-time embedded computer
applications), context switching tihes are typically 5-10
milliseconds in length; for some types of real-time applications,
context switching times of this length would be intolerable.
Telesoft claims that its Ada/ROS run time environment for the
MC68000 will accomplish context switching in 0.5-1.0 milliseconds,
and this length of delay appears to be quite reasonable for the
JAMPS application.

32

-

Table 3

Benchmark Test Results Using the Sieve of Eratosthenes[7]

Execution
Operating Time

Computer System Language (seconds)

MC68000, 8 MHz ROS Ada (Telesoft) 4.4
(Sun pa 68K)

MC68000, 8 MHz ROS Ada (Telesoft) 5.0
HP-9830

MC68000, WICAT, KCS/UNIX C (Johnson) 4.71
150 WS

MC68000, Charles UNOS C 6.3
River 68

MC68000, 8 MHz Not available C (Whitesmiths) 9.82
EXOP MACS

MC68000, 8 MHz Not available Assembly 0.49

33

O -M E - .L-OW-W '%A -W -1 '7 -7 roof -7 7 P." W i .- Ir. w .

2.4.3 Memory Use

The on-line and off-line JAMPS software written in "C" amount
to 9,953 and 4,944 source statements of C source code, respectively;
(see table 5 in section 4.4). On the basis of a recoding experiment
described in section 4.3, it appears that Ada requires 46% more
source statements than "C" for equivalent functions. Hence, 14,531
Ada source statements will be required for the JAMPS on-line
functions (a separate memory overlay). On the basis of this same
experiment, on the average, each complete Ada source statement
generated 24.8 bytes of object code. It follows that the online
applications software will occupy 360 Kbytes* (14,531 x 24.8 - 360K)
of memory. The UNIX and ROS run time environments require an
additional 260 Kbytes and 80 Kbytes, respectively. Therefore, JAMPS
software written in Ada will require a main memory size of .75 to
1.0 megabytes, and this does not appear to be a cause for concern.

2.5 COMPILER RELIABILITY

The object code generated by immature compilers frequently
doesn't execute properly (i.e., is unreliable). However, Telesoft
has already sold 350 of its Ada compilers, and their widespread
early use has allowed these compilers to mature at an unusually
rapid pace. The consenus is that Telesoft Ada compilers are
reliable enough to be useful, although workarounds are frequently
required because significant features of the Ada language are not
yet supported. Singer-Librascope[8], for example, claims to have
successfully used a Telesoft Ada compiler for the MC68000 on two
different acquisition projects.

Error diagnostics generated by immature compilers are
frequently meaningless to applications programmers. However, at the
AdaTEC meeting in Dallas (October 1983), Telesoft successfully
demonstrated that their compiler underlines the offending clauses in
erroneous Ada source statements; references to applicable sections
of the Ada Language Reference Manual were observed to be appended to
the faulty source statements as well. Nevertheless, while using the
Telesoft Ada compiler on the WICAT computer at MITRE, a number of
abstruse (unhelpful) error diagnostics have been observed and
several compiler crashes have occurred. The apparent discrepancies
between the demonstration in Dallas versus the Telesoft compiler
performance at MITRE, Bedford are attributed to recent enhancements
which are not yet available in the compilers released to the public.

*The existing JAMPS on-line software written in "C", which does not
include local area network functions included in the sizing
estimate for Ada-compiled programs, occupies 234 Kbytes.

34

~~~~*% ~~ ~ ~ _ .%.e_%. . _. .:.- KK:z. N'.*** N.-~



In part, the feasibility of duplicating JAMPS software in Ada
may hinge on the availability of quick maintenance support for Ada
software development tools. Telesoft is a small fira (15 employees
as of 1 February 1983), and it is uncertain whether an organization
of this size can provide adequate maintenance support to many users.
LabTek is an even smaller company which sells systems including
WICAT machines (based on MC68000) in combination with Telesoft's Ada
software development tools. In the past, LabTek has generously
provided a lot of free advice to MITRE personnel when they were
experiencing problems using the Telesoft Ada compiler. In many
instances, these were programmer problems, not compiler errors. It
has been more difficult to obtain answers from Telesoft directly.
However, Telesoft does seem to be distributing improved versions of
its compilers at intervals of once every two to three months.

2.6 PHYSICAL LIMITATIONS OF THE TELESOFT COMPILER

The limitations of the Telesoft Ada compiler have not been
fully determined. However, users of the Telesoft computer do not
seem to be voicing many objections in this regard. The following
data summarizes several telephone conversations with marketing
representatives:

" Maximum number of lines of source code per compilation
module greatly exceeds any requirement which JAMPS might
impose, and therefore is not regarded as a potential area
for concern.

o Maximum size of symbol table < 128 Kbytes.

o Compilation speed < 300 lines of source code/minute.

o Maximum number of simultaneous compilations (in parallel on
same host computer) - 1. This limitation is significant.
The schedule for reimplementing JAMPS software in Ada needs
to be stretched out because the number of programers who
can access the host computer will be quite limited.
Alternatively, more than one host computer might be used,
but that approach will compound the problems of software
configuration control.

35

A&, 'k**,*'.



SECTION 3

COST FACTORS

Factors which need to be taken into account while preparing
cost estimates for duplicating JAMPS software in Ada are discussed
as follows:

o System requirements specification

o Contract monitoring support

o Software reusability

o Training

o Software development facilities

o Software architecture

o Testing

o Performance measurements

o Redesign of programs which generate "source tapes"

o Configuration management

3.1 SYSTEM REQUIREMENTS SPECIFICATION

The requirements specification for JAMPS was not prepared in
accordance with military standards and in some ways is not entirely
appropriate for use by an independent contractor for an acquisition
program. However, with ample support from the government, an
amended version of the requirements specification will suffice. The
requirements baseline for JAMPS is expected to be fairly stable
during the next several years.

Inasmuch as The MITRE Corporation has already developed a
prototype model of the JAMPS system, it is anticipated that the
amount of system engineering work to be accomplished by the con-
tractor will be less than normal for a project of this size.
Functional allocations between hardware and software have already
been determined. The operator interface is well defined.

36



3.2 CONTRACT MONITORING SUPPORT

An unusually high level of contract monitoring support will be
necessary for several reasons:

o It is assumed that an entirely new set of disk file
structures will be defined for JAMPS, and this will not be
an easy task. The new file structures should be designed to
facilitate the use of Ada and must be considered when the
government undertakes redesign of the off-line programs at
the Langley Data Processing Center.

o Many things need to be done* to establish and monitor a
contract involving the use of Ada; there is little
precedent within ESD which can be drawn upon for these
purposes.

o It is anticipated that the JAMPS efforts to use Ada will

describing the "software methodology while designing in Ada"
and "lesflons learned while applying Ada" will be required in
addition to the standard forms of software documentation
which are normally required of DoD contractors.

3.3 SOFTWARE REUSABILITY

The strictness of Ada compiler validation reduces, but does not
eliminate, the problems of software portability and reusability. It
costs more and takes longer to prepare software that is easily
reusable, regardless of which programming language is used[9 ].
Programming standards and conventions which require isolation of
machine dependencies (e.g., precision of fixed point arithmetic),
compiler dependencies (e.g., differences in computational
efficiency), and run time environment dependencies (e.g., expedited
dispatching) must be rigidly enforced. It is intuitively estimated
that designing for software reusability will increase development
costs by 20Z and that this will more than pay for itself if JAMPS
software is to be reused in numerous other systems. There is no
empirical data available to support this intuitive estimate.

*Preparation of RFP, IFPP, Proposal Evaluation Criteria, policy
decisions relative to the use of Ada-based Program Design Language
in formal software documentation, guidelines for Ada programming
style (standards and conventions), etc.

37

4.1



It is noted that the existing software written in "C" was not
prepared with reusability in mind, and, as a consequence, is
expected to be fairly awkward to incorporate in other systems. It
is also observed that the reusability of JAMPS software written in
Ada will be diminished by any dependence upon the availability of
specific features in an Ada run time environment which are not
required by MIL-STD-1815A (Ada Language Reference Manual).

3.4 TRAINING

Program management and contractor personnel will probably need
extensive training, both in the Ada syntax and especially in the
software engineering principles upon which the Ada language is
based. Every individual involved should have at least four weeks of
formal training in Ada. Additional training in the preparation of
reusable software is highly recommended. It is also suggested that
the consulting services of an Ada expert be made available to the
JAMPS project, especially during the early stages of development;
this individual will critique the first attempts by JAMPS
programmers to use Ada.

DoD policy disallows programmer training as an expense which
can be directly charged to an acquisition project*. Nevertheless,
during the transition period in which most programmers will be
unfamiliar with the Ada language, it is inevitable that some amount
of training will be required.

3.5 SOFTWARE DEVELOPMENT FACILITIES

The Telesoft Ada compiler requires a 1-megabyte main memory and
a 15-megabyte disk storage unit. Configuration management of Ada
source and object code files is expected to increase disk storage
requirements even further. It is assumed that at least two standa-
lone software development facilities will be acquired and maintained
throughout the effort to duplicate JAMPS software in Ada. Much of
the testing of Ada programs will take place on the host computer
under the control of a symbolic debugger. Highly optimized Ada
object code is generally undecipherable and cannot easily be patched
in machine language format in the target computer. Therefore, the
host computer (software development facility) should include several
consoles to support parallel efforts by various programers. Even

*The Director of the Ada Joint Program Office made this statement at
the AdaTEC meeting in Dallas on 19 October 1983.

38

-; * . - . " ".. . , ' - ',- '. - , '.. .' '. " ' . , , . , ,' ' . " - " . . • , -.



though only one programmer will be able to use the Telesoft Ada
.v *compiler at any one time, other programers can do other chores,
A' such as text editing, on the host computer (in parallel) while a

compilation is underway.

3.6 SOFTWARE ARCHITECTURE

To take full advantage of the features inherently available
with the Ada language, the software architecture for JAMPS must be
fully redesigned. There is little point in recoding on a module-
per-module basis with existing software written in "C"; this would
result in Ada code that would be both inefficient and difficult to
reuse in other systems.

On the basis of performance measurements, it has been
determined that the response time performance of JAMPS is largely
determined by the number of disk accesses required for various types
of messages. To reduce the number of disk accesses, the existing
disk-file structure needs to be changed extensively, combining
certain files together and eliminating data stored redundantly in
two or more files. The design of variant record formats should take
into consideration the needs of generic input/output routines
written in Ada. The record formats which currently exist in JAMPS
will be difficult to accommodate in Ada.

3.7 TESTING

It is proposed that redesign of disk file structures will be
accomplished in "C" prior to the reimplementation in Ada, and that
the disk file structures used by programs written in "C" and in Ada
will be kept exactly the same. This will reduce the risks
associated with Ada by making it possible to partition the
integration and testing of Ada software into two separate efforts:

o New (unproven) off-line programs written in Ada can be used
to both populate and validate the disk-resident files;
afterwards, proven on-line programs written in "C" can be
used to verify that the disk files have been initialized
appropriately.

o Proven off-line programs written in "C" can be used to
populate and validate the disk-resident files; afterwards,
new (unproven) on-line programs written in Ada can be
exercised with high assurance that the data obtained from
disk during on-line operations is correct.

39



This approach will permit integration testing in parallel for off-
line and on-line programs written in Ada, and will reduce the over-
all time to accomplish the duplication effort. If this approach isnot adopted, the software development schedules should be extended

at least four months.

3.8 PERFORMANCE MEASUREMENTS

Special software tools should be developed by the Air Force
for performance measurements on Ada programs in the MC68000 because
such tools are not expected to be made available by software vendors
in the immediate future. As a prerequisite for developing these
tools, the government will need to acquire the source listings for
the Ada run time environment which has been selected.

3.9 REDESIGN OF PROGRAMS WHICH GENERATE "SOURCE TAPES"

It is ass-ied that the government will undertake the redesign
of off-line programs which process the "JINTACCS tapes." These
revised prograns will obviate any need for YACC and LEX capabilities
as presently made available by UNIX to the IBLD programs in JAMPS.
It is further assumed that the feasibility of using YACC and LEX in
conjunction with Ada-compiled programs is extremely doubtful.
Therefore, it would be necessary to duplicate YACC and LEX functions
in Ada if the government is unwilling to assume responsibility for
the proposed changes.

If JAMPS were redesigned to bypass any need for support from
the Data Processing Center at Langley AFB, accepting the JINTACCS
tape as input instead of the "source tape," then the functions
currently provided by 2500 lines of "C" source code at the Langley
Data Processing Center must somehow be accommodated in JAMPS. In
addition, the YACC and LEX functions (2,670 and 2,820 lines of "C"
respectively) and the IBLD functions (in JAMPS) which would other-
wise have been absorbed by the Langley Data Processing Center (3,000
lines of "C") must be considered while scoping the size of the
effort to duplicate JAMPS software in Ada.

3.10 CONFIGURATION MANAGEMENT

Telesoft does not currently provide tools for Ada software
configuration control, nor does it intend to begin development of
such tools during 1984. Nevertheless, it is highly desirable to
have such tools for keeping track of dependencies between different
versions of separately-compiled modules. Accordingly, the Air Force

40

MU M 0 '* f .*.*.*'* *.*.*I-.. ~ .



will need to develop its own configuration management tools in
support of JAMPS software development in Ada.

41

..........



Z I.

SECTION 4

ESTIMATES OF THE NUMBER OF ADA SOURCE STATEMENTS
TO BE DEVELOPED

*Estimates of the number of Ada source statements to be
developed were determined in the following manner:

o The actual number of lines of "C" source code in the
existing JAMPS system was computed with comment statements
excluded.

o Adjustments were made to convert lines of "C" code into
equivalent complete source statements written in the "C"
language.

o Adjustments were introduced to reflect the expected effects
of simplifying the functional requirements for JAMPS off-
line programs via "source tape" redesign. Allowances were
made for new local area network requirements not yet incor-
porated into the existing JAMPS software written in "C".

o A representative example of "C" code from JAMPS was recoded
in Ada, yielding a planning factor for expressing/estimating
Ada source statements in terms of equivalent (existing) "C"
statements.

o Estimates for Ada source statements to be developed were
computed by multiplying a conversion factor (from the
recoding experiment) times the adjusted number of "C" source
statements.

The validity of estimates which are based on an extrapolation
from the results of a recoding experiment is highly questionable.
It t quite possible that if the recoding experiment had been
conducted by some other programmer and/or the representative example
selected from existing JAMPS software to be recoded in Ada had been
different, then the estimates for Ada source statements to be
developed might change substantially. However, the more traditional
approach for estimating the size of a software job, based on the
cumulative sun of intuitive judgments about the sizes of various
modules, is also prone to large errors. Regardless of which method
is followed, an error of 25% while estimating "source statements" to
be developed is entirely possible.

42



4.1 SIZING ANALYSIS FOR EXISTING JAMPS SOFTWARE

The results of a survey of JAMPS code written in "C" language
are depicted in table 4; comment statements are not included. The
data in table 4 corresponds with the "C" implementation on the DEC
11/23 and will be subject to minor changes while shifting over to
the MC68000.

4.2 ADJUSTMENTS

The actual "source data" shown in table 4 has been adjusted in
several ways, yielding the results depicted in table 5. The line

* counts in table 4 for "C" code include certain lines which contain
nothing more than a single bracket, "[". For purposes of cost
estimation, these lines should be treated just like "comment" lines,
(i.e., ignored). On the basis of an examination of a representative
example of the "C" code, it is estimated that 14% of all "C" source
code lines shown in table 4 correspond to simple "brackets" and
should be discounted accordingly.

The data shown in table 4 is expressed in terms of "lines of
code." It is observed that in numerous instances, a single JAMPS
source statement expressed in "C" occupies two or sometimes three
lines. This is a matter of programming style. Some programmers
prefer to write one source statement per line; others write indi-
vidual source statements using several lines. For purposes of
software cost estimation, it is more meaningful to use complete
source statements, not just "lines of code." For this reason, the
data in table 4 has been further adjusted to remove the efforts of
multiple lines per source statement. On the basis of an inspection
of JAMPS code, it is estimated that 162 of the lines of "C" should
be discounted as "spillovers" from preceding lines. In summary, the
"number of lines" of "C" code has been reduced by 302 (142 + 162),
while reexpressing the sizing data in terms of "source statements"
(table 5).

It is estimated that 3000 lines of IBLD (off-line) "C" code can
be eliminated by redesigning the "source tape" format. In essence,
more of the burden of initializing JAMPS will be assumed by the
Langley AFB Data Processing Center in the future. In the event that
the government does not agree with this assumption, then the 3000
lines of IBLD code (i.e., off-line JAMPS functions) plus an
additional 5540 lines of "C" code in UNIX (YACC, LEX) must be
considered as part of the effort to duplicate JAMPS software in Ada.
If JAMPS bypasses the Langley AFB Data Processing Center altogether,
accepting the JINTACCS tape directly as input, then the functions

43



Table 4

Sizing Analysis for Existing Software Written in "C"

Code Source Lines Memory Utilization*

JAMPS Off-Line Programs

IBLD Programs 7,736 Not available
Test Programs 2,327 Not available

(consistency/
completeness)

10,063

JAMPS On-Line Programs

Display 8,447 89,704
Comunications 1,077 23,256
Remote Functions 3,694 121,536

(repeated as in-line
code)

13,218 234,196
Bytes of on-line
executable code,
exclusive of
UNIX.

Total for JAMPS 23,281

Off-Line programs which 2,500
generate "source tapes"

*Memory utilization is based on "C" compiler for the DEC 11/23

computer.

44

M,.,X c



Table 5

Sizing Data with Adjustments

"C" Source Lines "C" Source Statements

JAMPS On-Line Functions

Existing Functions 13,218
Allowance for Local 1,000
Area Network Functions

Equivalent lines to 14,218 9,953
be recoded in Ada

JAMPS Off-Line Functions

Existing Functions 10,063
Less simplifications - 3,000

due to new "source
tape" format

7,063 "Best Case" 4,944

If Langley AFB Data Processing Center is unwilling
to revise the "source tape" format:

Existing Off-Line JAMPS 10,063
Functions

LEX 2,870
YACC 2,670

Total off-line code to 15,603 "In Between Case" 10,922
be duplicated in Ada

If JAMPS Bypasses Langley AFB Data Processing Center 4e
Altogether:

Existing Off-Line 10,063
Functions

LEX 2,870
YACC 2,670
Programs which generate

"source tapes" 2,500

Total off-line code to 18,103 "Worst Case" 12,672
be duplicated in Ada

45

-- * - .- *,* .*m**m, ~*



currently performed by 2500 lines of "C" code at Langley AFB must be
accommodated in JAMPS.

4.3 A REPRESENTATIVE EXAMPLE OF "C" RECODED IN "ADA"

A representative example of JAMPS software written in "C" has
been recoded in Ada. The complete example in both languages is
provided in Appendix A, and the results are stmmarized in table 6.
Owing to the incompleteness of the Telesoft Ada compiler for the
MC68000, many features of the language had to be avoided during
compilation. Hence, the example had to be recoded using two
different methods:

o Recoding without any restrictions (i.e., using features of
the full Ada language). This method produced a conversion
factor which can be used for determining the number of Ada-
source statements to be developed on the basis of equivalent
source statements written in "C".

o Recoding in Ada, circumventing deficiencies in the compiler
whenever necessary. (Approximately one-third of the code
written using the full Ada language produced error
diagnostics during compilation; therefore, the code that
will not compile appears as comments in the listing shown in
Appendix A.) This second method produced code which could
be compiled error-free, and the results can be used for
estimating memory requirements for programs written in Ada.

The results of the experiment suggest that Ada as a language is
more verbose than "C" because 1.46 source statements in Ada were
found to be functionally equivalent to 1.0 source statements in "C".
This conclusion is somewhat misleading because the number of
executable source statements written in "C" and Ada were roughly
comparable (134 versus 125, respectively). The greatest difference
between the number of source statements using the two languages is
attributable to the explicit data declaration statements which Ada,
unlike "C", requires for defining the disk-resident data records.

In "C", data record formats are implicitly defined in the
executable code rather than in explicit data declaration statements.
During the recoding experiment, trying to fathom implicit record
formats proved to be fairly difficult, leading to the conclusion
that Ada software would be easier to maintain than "C" software.

46

F U ~ V%......- :v~~ *~-*. .~ .. '. .*~r" *J'~.~ a



Table 6

Conversion from "C" to Ada

Source Statements

"C" Ada

JAMPS 167 244
Recoding
Experiment

Sieve of 23 34
Eratosthenes

Conclusion: 1 Source Statement of "C" source code = 1.46 source
statements in Ada.

244 .1.46
167

Each source statement in Ada generates, on average, 24.8 bytes of
object code (see appendix A).

4.4 ESTIMATES OF THE NUMBER OF ADA SOURCE STATEMENTS TO BE
DEVELOPED

The estimated number of Ada source statements to be developed
is computed in table 7. Depending on what assumptions are made
about the "source tape" format, the estimated number of Ada source
statements ranges from 23,939 to 35,222.

47

S.--*'.* '



Table 7

Estimates OF Source Statements of JAMPS Source Code

to be Developed in Ada

".C" Ada

Off-Line Functions

Best Case 4,944 7,218
In-Between Case 10,922 15,946
Worst Case 12,672 18,501

On-Line Functions 9,953 14,531

Configuration Management Tools 1,000 1,460

Performance Measurement Tools 500 730

Totals

Best Case 16,397 23,939
In-Between Case 22,375 32,667
Worst Case 24,125 35,222

Conversion Factor: 1 source statement of "C" - 1.46 source
statements of Ada.

48



SECTION 5

ADA IMPLEMENTATION PLAN

A tentative plan for duplicating JAMPS software in Ada is
presented below. Basic assumptions have been made as follows: (1)
a contractor will undertake the bulk of the effort involved; and (2)
300-series procurement regulations and practices will be followed.
If, instead, the standard ESD acquisition practices were adopted,
based on 800-series regulations, it is expected that the cost of
duplicating JAMPS software in Ada would rise substantially, perhaps
even double.

5.1 MANPOWER REQUIREMENTS

Estimated manpower requirements for various tasks are shown in
table 8. This table reflects recent experience[10,11] in applying
the Ada language; the amount of effort expended during preliminary
design is above average and the amount of effort consumed during
integration and testing is below average when Ada is compared with
other higher order languages (see figure 4). Inasmuch as JAMPS has
already been written in "C", the contractor is not expected to
undertake the usual level of effort for requirements analysis; such
things as operator-interface studies will already have been
completed by MITRE and need not be repeated. Figure 4 illustrates
the differences between manpower allocations for a "typical"
acquisition program and those assumed for the JAMPS implementation
in Ada.

Very little is available in the way of data and models to
support software conversion estimation[12]. Typical productivity
during new development using higher order languages is 300 delivered
source statements per man-month. If JAMPS software is completely
redesigned and fully rewritten in Ada, then this would be tantamount
to a new development effort -- not a software conversion job. Owing
to the complexity of the language and the lack of programmers
experienced in Ada, it will be assumed for purposes of this study,
that programmer productivity in Ada will be 250 delivered source
statements per man month.

49



Table 8

Ada Implementation Plan

Level*
of
Effort

(man
Task Description Responsibility months)

1 Update JAMPS System Performance Government 1
Requirements

2 Update JAMPS User's Guide Government 2
3 Prepare IFPP Government 8
4 Prepare RFP/SOW Government 8
5 Reevaluate Feasibility of Duplicating Government 1

JAMPS Software in Ada (to be accom-
plished 7/1/84)

6 Source Selection Support Government 4
7 Contract Monitoring Support Government 21
8 Redesign the Disk File Structures Government 12

9 Redesign Existing Programs in "C" to Government 36
Use Nev File Structures

10 Redesign the Format of "Source Tape" Government 3
11 Redesign Off-line Programs Which Generate Government 9

"Source Tapes" (502 Redesign)
12 Acquire, Install, Demonstrate, and Contractor 12

Maintain Ada Software Development
Facility

13 Conduct Benchmark Measurements to Deter- Contractor 4
mine Efficiency of Ada Compiled Code

14 Requirements Analysis Contractor 7
15 Preliminary Design Contractor 26
16 Detailed Design On-line Contractor 18
17 Code and Debug Programs Contractor 15
is Development Testing for JAMPS Contractor 14

19 Validation Testing and Contractor 12
Demonstration

*Based on "optimistic assumptions"

50

li.. ,.,, S..",l,,s -- ,.a ,.,.! J - ,,. ...... -. -



-j T . .

.* Table 8 (concluded)

Level
of
Effort~(man

Task Description Responsibility months)

20 Requirements Analysis Contractor 4
21 Preliminary Design Contractor 13
22 Detailed Design Contractor 928 Code and Debug Off-line Contractor 7
24 Development Testing Programs Contractor 7

25 Validation Testing and for JAMPS Contractor 6
Demonstration

26 Prepare Formal Validation Government 6
Test Procedures

27 Conduct Validation Tests Government 4
28 Conduct (2) Timing/Sizing Analyses Contractor **
29 Document Potential Pitfalls to be Contractor **

Avoided While Attempting to Reuse
JAMPS Software

30 Document Ada Software Methodology Contractor **
Adopted

31 Design, Code, Test Document Contractor 10
Configuration Management Tools

32 Design, Code, Test, Document Contractor 4
Performance Measurement Tools

33 Training in Use of Ada Contractor **
34 Training in Use of Ada Government 0
35 Document Lessons Learned While Government 3

Maintaining an Acquisition Program
Using Ada

36 Support to OED Demonstration Government 3
37 management Contractor 21
38 Software Quality Assurance Contractor **
39 C5 Software Documentation Contractor **

**Included indirectly in man-month estimates for software development

(tasks 14-25).

51

- *1~~~ ~ *~u . . .. ** J J>



S.1

0 .-.

00~
Z~~t N r 0Q

En u

ILI-

co 0)

W z 0Uj LU0)0

52 N1



From section 4, it is estimated that a total of 23,939 Ada
source statements need to be developed by the contractor:

On-Line Programs (redesign) 14,531
Off-Line Programs (best case) 7,218
Tools (new design) 2,190

23,939

23,939 source statements - 120 mm for software
250 source statements per man-month development during

the preliminary
design through in-
tegration testing
phases.

From figure 4, preliminary design through integration testing
constitutes 79% of the total software development effort; activities
such as requirements analysis and formal demonstrations represent
the remainder of the effort. Thus,

120 -m . 151 mm will be required for the total software effort
by the contractor.

The individual efforts by the contractor for development of on-line,
off-line, and tool software are computed to be 92 mm, 45 mm, and 14
mm, respectively.

* The 151 am estimate for software development efforts by the
contractor includes, among other things, tasks such as software
documentation, timing/sizing studies, and software quality
assurance. It does not, however, include the maintenance of
software development facilities, contract administration, etc., and
when these other factors (see table 8) are taken into account, the
total manpower requirements for the contractor for all activities
amount to 188 mm. Additional efforts to be performed by the
government personnel are estimated to require 121 mm.

53

-~~ ~~~~ ~~~ - . . ..... l ..... - . - *~I ~



_F W'% *. A..F . AV 7

5.2 SCHEDULING REQUIREMENTS

A Gannt chart for duplicating JAMPS software in Ada is
presented in figure 5. The tasks in the Gannt chart are defined in
table 8. This chart indicates that the contractor's efforts will be
completed in 21 months:

Requirements Analysis months 0-4

Software design, development, months 4-19*
and integration testing

Acceptance testing, by the months 19-21
government

Operational effectiveness months 21-23
demonstration

It is assumed that off-line and on-line programs will be developed
and tested independently of one another (see section 4.8).

*The results of the Cocomo model projections suggest that software
design, development, and integration testing will only require 12.9
months (see section 6.2).

54

* ~ ~~~~~~~~~~~~ A, j_:~~ ''~ ~".~ **% ...



SqI

al
la

0o4
4(4"

Ow-

- -- --
O-

Figure 5. GAHNT Chart for Duplicating ,TAMPS Software in Ada.

55



't...
I-I'

0

Z C

Fiue5 AN hr o ulctn AP

SotaeinAa(onldd

U5



SECTION 6

COST ESTIMATION

The cost estimates for the contractor's effort to duplicate
JAMPS software in Ada have been determined by two independent
methods:

Method 1 - Software cost estimates have been computed by
multiplying manpower estimates (see table 8) times
assumed labor rates (which include general and
administrative costs).

Method 2 -Prediction of software development costs via the
Cocomo model. The second set of results will be
used for purposes of comparison (i.e., for assessing
the reasonablenese of the estimates generated by
Method 1).

6.1 METHOD 1: MANPOWER REQUIREMENTS MULTIPLIED BY ASSUMED LABOR
RATES

According to Reference 13, microcomputer programmers were paid
annual salaries during 1983 as follows:

Experience (Years) Salary ($K)

0-2 24.0
2-4 27.7
4+ 34.5

For purposes of this study, an annual salary of $30K will be
assumed. To this figure, 1282 needs to be added for overhead and
20% for general and administration expenses. Hence, the cost per

man-month is computed to be $6,200.00

Optimistic and pessimistic estimates for duplicating JAMPS
software in Ada are depicted in tables 9 and 10, respectively.
Taking the average of the optimistic and pessimistic estimates, the
total cost to duplicate JAMPS software in Ada is projected to be
$4,486K.

57

~. ~ . y,* * ... * **.* . .. * *.-* *..



Table 9

Optimistic Cost Estimate

Estimate with

20% Adjustment

Initial Because of Soft-
Estimate ware Reusability
via Requirements and

Man-Months x $/MM Method 1 6% Incentive Fee

Contractor 188 x 6,200 - $936K $1,179K
Government 85* x 9,166 - $ 779K

Software Development $ 50K
Facility (Labtek[14])

Training by Consulting 0
Firm

Consulting Services $ 100K
Source Listing for Ada $ 13K
Run Time Environment

Management Reserve (25%)** $ 530K

$2,651K

Cost per source statement $2,651K m $110.74/source
23,939 statements statement

Programmer Productivity - 250 source statements/mm.

*Task 9, Redesign of Existing Programs in "C" to use new file
structures, has been omitted from the "Optimistic Cost Estimate".

**A managment reserve of 25% is consistent with ESD practice for

software redesign.

58



Table 10

Pessimistic Cost Estimate

Estimate with
502 Adjustment

for Software Re-
Initial usability and 6Z
Estimate Adjustment for
via Contractor Award

Man-Months x $/MM Method 1 Fee

Contractor 381* x 6,200 - $2,362K x 1.56 a $3,685K
Government 121 x 9,166 $1,109K
Software Development $ 50K
Facility

Training by Consulting $ 50K
Firm

Consulting Services $ 150K
Source Listing for Ada $ 13K
Run Time Environment

Management Reserve (25%) $1,264K

$6,321K

Cost Per Source Statement - $6,321K $179.4635,222 Statements =$196

Programmer Productivity - 129.4 Source Statements/rm (Per Cocomo
Model)

35,222 Source Statements = 272 -m for preliminary design through

129.4 s.s/mm integration and testing

272 - m - total S/W development effort
.79 +37 m for contract administration etc.

381 total for contractor

59

r ' ,- -, , " " ,. .'o. . ','. ', " " " " ".,.. ".* ," .' . .. ". ''.. '



6.2 METHOD 2: COST ESTIMATION VIA THE COCOMO MODEL

The Cocomo model[15] has been applied as a means of verifying
the validity of cost and schedule estimates shown previously herein.
Inputs to the Cocomo model are summarized in table 11 and the
results predicted by the Cocomo model are depicted in table 12.

The Cocomo model computes estimates for cost, manpower, and
schedule requirements for the following phases of software
development by the contractor (only):

o Preliminary design

o Detailed design

o Code and unit test

o Integration and test

It does not include estimates for activities such as requirements
analysis, formal demonstrations, and project administration.

The Cocomo Model predicts that JAMPS software development in
Ada can be accomplished in 12.9 to 16.4 months; figure 5 indicates
that this same work effort (Tasks 15-19, 21-25, 31-32) will be
accomplished in 15 months.

The Cocomo Model predicts that software development will
require 170 to 272 man months, depending on which set of assumptions
is made. These predictions correspond with 151 ma (optimistic) and
344 um (pessimistic) estimates computed via Method 1, and can be
compared with the 180 actual man-months expended during the JAMPS
implementation in "C".

The level of staffing predicted by the Cocomo Model (especially
for the case involving pessimistic assumptions) indicates that a
fairly large mainframe computer capable of supporting as many as
15 consoles will be needed for Ada software development.

The costs per delivered source statement, as computed by Method
1 and 2, are not directly comparable because the Cocomo Model
does not consider such things as management reserve, contract
monitoring expenses, etc. The cost estimates per source statement
computed by Method 1, $110.74 and $179.46 for the optimistic and
pessimistic cases, are less than the ESD average ($200.00/source
statement ); this is to be expected because 300 series
procurement regulations are assumed.

60



Table 11

Inputs to Cocomo Model[15]

Development mode: organic, semidetached, embedded
Delivered source lines of code: 23,939 and 35,222 for optimistic

and pessimistic cases, respectively
Preliminary design costs: $6200/mm
Detailed design costs: $6200/mm
Code and unit test costs: $6200/mm
Integration and test costs: $6200/mm

Very Extra

Cost Driver Low Low Nominal High High High

RELY required software 0.75 0.88 1.00 1.15 1.40
reliability

DATA database size 0.94 1.00 1.08 1.16
CPLX product complexity 0.70 0.85 1.00 1.15 1.30 1.65
TIME execution time 1.00 1.11 1.30 1.66

constraint
STOR main storage constraint 1.00 1.06 1.21 1.56
VIRT virtual machine 0.87 1.00 1.15 1.30

volatility
TURN computer turnaround time 0.87 1.00 1.07 1.15
ACAP analyst capability 1.46 1.19 1.00 0.86 0.71
AEXP applications 1.29 1.13 1.00 0.91 0.82

experience
PCAP programmer capability 1.42 1.17 1.00 0.86 0.70
VEXP virtual machine 1.21 1.10 1.00

experience
LEXP programming language 1.14 1.07 1.00 0.95

experience
MODP use of modern 1.24 1.10 1.00 0.91 0.82
programing practices

TOOL use of softr.are tools 1.24 1.10 1.00 0.91 0.83
SCED required development 1.23 1.08 1.00 1.04 1.10

schedule

NOTE: Underlines are used to indicate the inputs selected.
Numerical values are cost driver multiplication factors used in the
model.

61

* .- *.*'.- ~ q



Table 12

Results from Cocomo Hodel

Optimistic Case

Schedule

Phase Man-Months Cost (K$) Months Staff

Preliminary Design 20.1 124.8 3.0 6.8
Detailed Design (DD) 33.5 207.4 5.2 16.7
Code & Unit Test 52.8 322.2 included in DD
Integration & Test 64.1 397.2 4.8 13.4

170.4 1,056.6 12.9

Productivity: 140.5 source statements/mm
Unit Cost: $44.14/Delivered Source Statements

Pessimistic Case

Preliminary Design 32.0 198.4 3.5 9.1
Detailed Design (DD) 52.4 325.1 5.8 23.2
Code & Unit Test 81.7 506.6 included in DD
Integration & Test 106.0 657.3 5.7 18.5

Total 272.2 1,687.3 15.0

Productivity: 129.4 source statements/mm
Unit Cost: 47.91/source statement

62

, 0 -, .; = -.- - ,- .',-:- . , . . ... * ., ... .. * t. . .. .. ,.. .,,, ., ... *,,, ..,



37%4W1

The most likely coat to duplicate JAMPS software in Ada, given
the constraints provided herein, is the average of the optimistic
and pessimistic projections computed via Method 1 (i.e., $4.5m).

.4.63



- ~. * . * * 'W, -- - -- -* .

SECTION 7

ADVANTAGES AND DISADVANTAGES OF REIMPLEMENTING
JAMPS SOFTWARE IN ADA

7.1 ADVANTAGES

The principal benefits of undertaking an effort to recode JAMPS
software in Ada are the following:

o The use of Ada will promote JAMPS software reusability by
lessening the cost to incorporate JAMPS programs in other

- systems.

o The use of Ada is expected to decrease JAMPS life cycle
costs because of improvements in software maintainability.

o ESD will benefit from the experience of an acquisition
program involving the use of Ada.

7.2 DISADVANTAGES

The principal disadvantages in recoding in Ada are as follows:

o The Air Force has already invested 20 man-years in the JAMPS
software written in "C" and most of this investment will be
discarded if the software is rewritten in Ada.

o Air Force program offices which desire to use JAMPS software
written in Ada will be held up three years while waiting for
the Ada programming tools to mature and recoding of JAMPS
software in Ada to take place.

o There are risks associated with using Ada at this time
(e.g., programer productivity with Ada is unknown, ESD has
no experience with Ada in C31 applications).

o In the short run, code written in Ada is liable to be less
reliable than the proven "C" software in JAMPS.

64

_- AN



LIST OF REFERENCES

1. W. Kealy and K. Pigott, "Data Table Source File Description -

Data Table Maintenance Manual," ESD-TR-82-125, Electronic
Systems Division, AFSC, Hanscom AFB, MA (February 1982)
A118476.

2. Telesoft-Ada sales literature, Telesoft, San Diego, California.

3. G. Moulton, "The ISCS-Ada Compiler," Irvine Computer Sciences
Corporation.

4. R. DeLauer, "DoD Directive 5000.31, Computer Programming
Language Policy," 10 June 1983 (draft).

5. J. Buxton, Department of Defense Requirements for Ada
Programming Support Environments "STONEMAN" DoD, February 1982.

6. U.S. DoD, Reference Manual for the Ada Programming Language,
MIL-STD-1815A, 17 February 1983.

7. J. Gilbreath and G. Gilbreath, "Eratosthenes Revisited, Once
More Through the Sieve," Byte Magazine, January 1963,
pp. 285-326.

8. Telesoft-Singer Librascope News Release, "Singer Uses
Telesoft-Ada for Army, NATO, C3 Update, and It Works,"
13 September 1983.

9. J. C. D. Nissen et al., "Ada-Europe Guidelines for the
Portability of Ada Programs," National Physics Laboratory, NPL
Report DNACS 52/81, November 1981.

10. H. Conn et al., "Ada Capability Study, Final Report," General
Dynamics Report, DAAK80-81-C-0108, 30 June 1982.

11. H. Conn et al., "Ada Design Case Study, Ada Integrated
Methodology," General Dynamics Report, Contract No. DAAK80-
81-C-0108, 28 June 1982.

12. R. Wolverton, "The Cost of Developing Large Scale Software,"
COMPSAC 77 Tutorial Session.

13. Source EDP, 1983 Computer Salary Survey and Career Planning
Guide.

65



LIST OF REFERENCES (Concluded)

14. LabTek Corporation WICAT hardware and Telesoft software price
lists.

15. B. Boehm, Software Engineering Economics, Prentice Hall 1981,
Englewood Cliffs, New Jersey.

,.16

.- * . -'

-"4

_4'.

66

" ":,.* :'d'' /".f."%- ",". " 4""- "." -" " ": .'" • '-;-"-"/ .."..*-.,"." ." ", ."'."



APPENDIX A

A REPRESENTATIVE EXAMPLE OF JAMPS CODE REWRITTEN IN ADA

MITRE personnel at the Langley site selected a representative
example of existing JAMPS code to be rewritten in Ada. This example
was extracted from one of the off-line functions and is depicted in
Attachment 1. Its purpose is to convert a file consisting of ASCII
characters and numbers into a file consisting of ASCII characters,
binary data, and an index. The following material is borrowed from
D. J. Criscione.

During the conversion, some fundamental choices were made which
affect the number of lines of Ada source code produced. Little
regard was given to producing code which takes fullest advantage of
the features offered by Ada. Instead, the resultant Ada code
closely resembles the "C" code that was used as a model. Aside from
necessary syntactic changes, only a few small sections were
redesigned to accommodate language constructs which differ between
"C" and Ada. As a result, the lines of executable code remain
roughly the same. However, the total number of lines of Ada code is
much larger than that of "C", because the Ada compiler requires
explicit data declarations for describing the information contained
in records (read in from disk) whereas the "C" compiler does not.

The "C" listing sometimes contains several local variable
declarations in a single line where Ada encourages the definition of
a single data declaration per line, and this tends to distort the
results shown below:

Category Lines of "C" Lines of Ada

Program Overhead 5 14
Constants used by the compiler 49 49

Specification of data types and 23 35
data structures

Interface to UNIX files (code 3 22

and specification)
Local variable declarations 7 35
Executable code 134 125

TOTAL 231 280

Brackets -31
Continuation Statements -33 -36
Complete Source Statements 167 244

67



7*7,@ 1 * V * I 7 I_ M I I I
V 

IF - 1 W , - OR I " M

Due to the significant number of missing features in the
Telesoft compiler used in this experiment, it was not possible to

y compile (without error diagnostics) the 280 lines of Ada source code
referred to above. As a consequence, in numerous places, Ada code
appears as comments in the listing wherever it failed to compile
properly (see Attachment 2). Circumventing the compiler deficien-
cies, only 224 complete Ada source statements were actually
compiled, resulting in 5,566 bytes of object code or 24.8 bytes per
source statement.
Attachment 1: Source code listing for "C" code.
Attachment 2: Source code listing for Ada code.

68

Atahet2Worecd itn o d oe

"6'



Attachment 1

Representative Example Coded in "C"

69



.+. defines +44 Data Base Defines - 07/07/63 a.

.efine PAXMSGS 150 /* max messages in dir a'

efine MAXKDSS 600 /* max keuword in dir C/

S::efne "AXDFIS 1500 /* max dfis in dir a
t :efsne KDFZS 50 /* max dfils in a kds table a,

::efzne "STATES 100 /a max states per line (msg tables) a/

- .,efine KSTATES 100 /* max states per line (kds tables) a/

* .,eine DSTATES 100 /* max states per line (dfi tables) C'

* iefine MSTRMA;: 62 /a max length of str for man fids a/

* .efine NMANFLtS 3 /* max mandatory fields in a msg a/s

;efinq SHRTLEN S /a max length of short msg name C'

e4ine LONGL£V4 20 /a max length of long msg name C'

-efine KDSLEN 9 /m max character length of kds's C/

efine FDFHLEt4 25 /* max character length of fdfh's a

Seine MAXULA.! 35 /* max characters for validation

MED template code area */

i641ne DCHAIS BO /a max E tupes for a single chain a'

Ctine DTABLE ZOG /* max entries in a table macro a/

'eine DDUrs 100 /* max duis for a single dfi */

* efne DTABSTR J0 /a max characters in a table entry */

* efine KRSTATE s0 /a Max number of states in a row a/

* ?feine MSGINDEX i

.fine KDSINDEX

:efine MSG 3
efinq KDS 4

efine DFI 5

e eine FDFH 6

eitne rHIT '/ initialize data tables Mode */

*fine UPDATE F /i update existing data tables C.

.ine DBGON 1 /0 flag a'

fine DOGOFF 0 /* flag a/

=efine MFILtfi .4 /a maximum characters in file name C'

:e4ne TEMPFILC "abld.tmp /a temporary output file a,'

-!fine STRFILE "ibld.str /* temporary table string file a'

S..0ine CHN I

::efane COMNOTob z

'4 4ene COMTAB 3
: efine DIFNOTP40 4

gqsinq DIFTA 11

-# .ne ALTCHN 6

041ne DIF 7

nefine C

:efmne E 2
=:e Ie nc rix I

da fine FR

f:.#ine UNKNO4' 3 /* unknown used when error detected */

efane NA -1

70

•" * Y , .-

*'~~ ~~ ~~ ~ ' 8 ~~~ ~~q g &pJ.1 A ~.,.. 4
.~ . ~, ,*

4

q~~ ~ ~ ~ %~~ V % L ~ S%*!*w%~ . V, \



truct code
C

ant Cdfitypt; /-. l:C or 2%E for dfi type a
ant CdfII /* integer Ufa number *

int ca 'uil /* integer dui number *
ant crangol /v~ Izinteger range, 2=flaating point range a

/* 3=octal range, -1:flo range */
float Cfhigh; 'a 'clue of upper boundaryj (float) '

float cfiou; /* value of lower boundary (float) .

long Cihh /* value of upper boundary (long) .

long cilaw; /,~ value of lower boundary (long) .
ant Cmarni /* minimum code length of data item Codes 4
int emai.; /* maximum Code length of data item codes C
int cingth; 1w length in bytes of data item codes a
int ccnt; ,/m number of codes */
long Ictiexti /* location of next dui .

71

T ~ ~ ., ,. %% %* %



Al-nClude 4Stdio.h)
:rclude (ctype.h>
c lude "dof inos"
-dcude "helpstruct"

"--fine. NEMDFr 1 /* Ualu* returned from. and defined in lookaflead
;:-fine DUINAIE 2 /* Ualuo returned from, and defined in lookahead 5
=Y-fine LIT 3 /* uslue returned from, and defined in loakahead 5
r!-f ine CODELINE 4 /* Uoluo retur ned from, and defined in looadhed '
.fine RANGE 5 /* Uglue returned from. and defined in lookahead AIA
.fin@ OCT 6 /41 UAWue returned from, and defined in lookahead A/
;fine FLOAT 7 /* Ualue returned from, and defined in lookahead NA/

.- fin* ENDFrLE a /* Ualue returned from. and defined in lookahead vA/
=:-fino NAXLTNE so '5 Maximun size buffer for line read .

=:::4mne INTEGER 1 /* Integer range indicator AN/
:fine FLTPT 2 /s Floating Point range indicator 5.'
fi:#ne OCTRNGE a /* Octal range indicator .

-7.-E *Pin, *pout. vopreadout, *fopen()i
*uct Code Lfidt, codertad, *pCode. *pceead;
..r. sline[flAXLINEI. 3claneCNAXLINE3l. sonecod#EMAXLINEI;
g lcurpos. lcurtmp. icurloc. Itmpoff, ldfi. ftell()i
lincnt, posZ. sizemin. siaemax;

n (argc, argv)
*argcl
-r *argv[];

Ant codeli. Chit. s. loopi. loopZ. p051;
Ant readchk : 0;
Char cS

chralie pdfslsne, *pduailire, *pcline. Cponecode;
char sdfin*CMAXL?4C2, sduilin*CMAXLINE];

..sGRAND OPENING 55

if (arge (3

fprtntf(stdorr,'*** ERROR *** dan input and output file must)
fprintf(stderr,-b* nawadna;
exit' 1)8

Af ((pin .fopen(*+.rgv-r")a NULL)

fprintfstderr. 5** ERROR 'asunable to open %s for rtad\n-.*argv)I
exit(l );

i f ((pout = fopentw*+argv'si)):- NULL)

fprintf(stdorr.- seC ERROR wm* unable to open %S for writq'n-.*argv.
exit 1)a

72



if ((preadout -_ fcpnaa&rg.r-i %- NULL)

fprifltf(stdqrr. CaS ERRlOR *** unable to open %s for read\n-,*argvuz

'~wINITIALIZATION CODC Ea

pcode z licadel
pcread m lScoderead:

-* Set cur.sor locition to its initial position after the index s
Icurloc - sizeofiong) * mAXDrISj

.'a Set the posit i:r of pout (v:itput file pointer) *
fseek(pout. lcurloc.O)s

11 Initislize the iine count of numbier of lines read a
linecnt zOt

/#** BEGIN PROCESSING *

-def DEBUG
fprintf(stdout.'PIOCessing has begun!"-n*);

*e Inittilize space for first *ad. C
plante slinel

2Got the fiist :-,ie of the $-it. This loop will process the DFI's
aand the inner 15op will process the codes for each DPI. -

while (readchk : gets(plinv.MAXLINE~pin))

if (roadchk Cz Or)
preof C;

aCall the initializing routine, .'
initial()5;

aInititlize the strings that ore being used. S
pdfiline rdWilinti
pdlualine : sdluilinei
ponecodt z somecode;
pcline zz scline;

1 rind wvhvrv the iisput file pa'itter is positioned and increment the '
'line count. *I

scurpos 7 #ttellpin)s
++l inents

*Since de have a%*1eada Chteci this lint- we know we are working with *-'
~a new DfI. wde con statt evtP acting the information that we want. s

if (Walnt :: PEI)
pcod5-)cdfitypt - s

else if (*pline zz PC-)
pCod&-)Cdfitjpv C;

else

4prsntf5s~avrr.-o*s ERRO~R *** DPI type must be C or E. i
fparintf(stlerro-lint ',,. mlinent);

73



'Convert the DF1 number into. on integer by substring and an ascii to a
/* integer conversion, */

subStr(pl ine~pdfiltine.1,di.
sdfilineE41 \1

Ba efore we do tne conierrsioa. we must replace the leading blank (iftC
Wa e have one) with zero.
if (Sdfxlxn*ECO ' *

sdfilineCO2 O03

pcode-*)Cdfi patOi(pdfilineii

if (peode-),cdfi ( 0)
C

fpa intf'st,1*rr.-*** ER~nR *** nonnumitric DrI number %d,
peode->cdf i);

iprintf(stderr.'. line %d\n",lanecnt);

if (Pcode->Cd'Fi > MAXDFIS)

4print#(st1err,"*** ERROR *** DF! number out of bounds =%"
pcode- )cdf ai)S

4printf(sloerr,., line %d,,n", linecnt);

4Convert the DUI number ant:' an. integer by substring and an ascii to !P/
integer conversion. a
substr (p1 ire-duslIine,5,3i:
sduilineC33 .'

pCodt-,Cdui :Patoa(Pdualzn#);

if (pcode->cdia ( 0)

ftrintfisx2*rr."aa* EPPOR *** nonnumeric DUZ number %d-,
pcode- 'c dui is

iprintf(staerr.", line lld\n", linecnt);

a fultip;q the DF: number by 4 tu get the proper offset for thle .
*index. 0/

ldfi :4 * (pCo0@->Cdfs)S

*Clear any buffered information. s
fflush (pout) I
ffluShpreadout 'I

preadout :pointer to outpit file used for reading. *..
.pout zpointer '. output ftil used for writing, a-

aSave f'iv posit ian of Icurla7. If there are codes or a range. we a
*will want to erter this posit ionr in the index entry. S

lcurtep z curlocl

aSeek T. this PvflstiOn plus thw fize of the structure.
fseeki*pout * ic urloc a si zeof (pcodq) 1.0)5

74

* M*d



/Look ahead to 3P& if We are ready to process the codes. Switch '

/on the value returned. */
while M(oOpZ lookaheadtO)) I= ENDFILC)

* switch (loop2)

Case NcWDrI:
leurloc =ftell(pout)i
prstruc(O);

/41 Return to Outside loop '

break; /* to process next DFI.

Case DUINAMC:
aWhen ttix Dli! namea is contiruwo an more than one line. the lookahead .

aroutine will a1justs the file pjointer and increments the line count. *

~Continue in loop looking ahead. 5
bre ak;

Case LIT:
*A LITERAL has :oeon found. We want to zero out any values that may C
-have longed ha fore iiscovk? mnq the LITERAL. wde search for the C
anext 1W!. We ire then prepared to look ahead. see the next DF!. ~
aand theii we wil: write the structure info to file. C

In it ial();
searChoC;
prstrucl 5
break;

case CODELINE:
/* We are o.n a lin~e that contains codes and a LITERAL and a range *5/

-has not been f:.ard. 'At got the code- check to. see if it is continued 5
Son the next line and write the code to file. a

code len =0;

posl poses
pcline =getcode(plint);

w')ile f((Chk : lokaheadcO)) ---COVELINE) a
Cposl ( P0s2))

strmov#(pc Iin&eponVcodesi
pcline : oncat~poneCode).

4. pcode- )ccnt is

'When th~e first :ode is found. set the minimum and maximum code C

~equal to the Itngth of that code. Otherwise compare the size of the 8
aCode t, see if *t exceeds +no iazv of the maximum or minimum code C
'length, and act accordingly. */

if 'pcode->ccnt 1)

pcode->cmin size(pcline)l
pcode-)-cmax sizecpclino)I

else

if C(sizeir size(pcline)) 'pcode->cmini
pcodo-'cman =sizesin;

75



if ((sizemax size(pclifle)) > pcod@->Cmax)
pcode->cmax =sizemax,

codelen =SiZt(pct ane) + 1;

pcode->clngth *=codelei;

;w-ef DEBUG

2C a I

'Write the Code tO the file. *

ivtte Cpc i ie. izeofCch ar ).~Code len.pout )

break,

case RANGE:
We have found a left p.areflt'.eses followed by a non-alphabetiC. we are*-

'ready to process a range. ~
range( );
break.

default:
fprzntf(stderr- *** ERROR *** Inapplicable return"),
fprintf(stderr.* value = %d", IoopZ);
fprantfstderr.'. line %d\n",ljnecnt);

break;

if ((Koopz z NEWDFI) 'loopZ zzLIT))
break;I

if (loop2 zztJIDFILEJ

prstrucCO-;
preof( ;

e * cloi q inner loop a
/* end program*/

76



Attachment 2

Representative Example Coded in Ada

77



.,

This package implements the insert 'DEFINES' used bw the C implementatior
of the JANPS DFIDUI Parser.

Package DEFINES is

MAXMSGS: constant integer i 150;
MAXKDSS: constant integer := 600;
MAXDFIS: constant integer := 1500;

KDFIS: constant integer 50;
MSTATESt constant integer 1= 1001
KSTATES: constant integer 1= 100;
DSTATES: constant integer 00;
MSTRMAX: constant integer 1= 62;
MMANFLDS; constant integer " 3;

SHRTLEN: constant integer :=5;
LONGLEN: constant integer :=20;

KDSLEN: constant integer :-9;
FDFHLEN: constant integer :=25;
MAXVALI: constant integer :=35;
DCHAINS: constant integer %=30;
DTABLE: constant integer :=200;
DDUISt constant integer 2=100;
DTADSTR: constant integer :=40;
KRSTATE: constant integer :=50;
MSGINDEX: constant integer :=I;

KDSINDEX: constant integer :=2;
MSG: constant integer :=3;
KDS: constant integer :=4;
DFI: constant integer :=5;

FDFH: constant integer :=6;
INIT: constant integer :=1;

UPDATE: constant integer :=2;
DBOON! constant integer :=1;
DODGOFF: constant integer :=0;
NFILENM: constant integer :=14;
TEMPFILE: constant string 1°"ibld.tmP*;
STRFILE: constant string :='ibld.str';

CHN: constant integer 1=1;
COMNOTAD: constant integer :=2;
COMTAB: constant integer :=3;
DIFNOTAB: constant integer :=4;
DIFTAB: constant integer :=5;
ALTCHNI constant integer :=60
DIF: constant integer :=7;
C: constant integer :=1;
E: constant integer :=2;
FIX: constant integer :=I;

VAR: constant integer :=2;
UNKNOWN: constant integer :=0;
NA: constant integer :-1;

end DEFINES1

78

qA



i

with text-iordirect-ioJAMPSSTURSJAMPSINPUTJAMPSOUTPUTDEFINES;
use text-io;
use integer-io;
use .defines;

' Package DFIDUIPARSER is

-- The next line is necessarv since Ada will not allow the

-usage of undefined tupes in twpe deffinition.~t~je code;

, -- Some tupe deffinitions to be used in the structure 'CODE'.

tjpe access-code is access code;

* ....NOTE: Twpe code is used internallw, but must be changed into
-- a stream of characters via unchecked conversion to

-- accomodate the character oriented C implementatior,.

twpe code is
record
CDFITYPE: integer; -- This should be a user definted twPe

-since the onlv legitimate values are

--I and 2.
CDFI: integer;
CriUI: integer; -- CDFI and CDUI should Probablv be useT

-defined twPes, but I'm rnot sure what
--ranges would be legitimate.

CRANGE: integer; -- This should also be a user defined

-'floatinm-point', 'octal', and
' ; -- no-range',.

tCFHIOH: float;
%CFLOWI float;
SCLHIGH: float;

CLLOW: floaty
CMIN: integer;
CMAX: integer$

CLNGTH: integer;
CCNT: integer;
LCNEXT: access-code;

end record;

4

%10



-- nothr non-impi 00ented feature. Record representation clauses
- re n t vat su pported. This means that the record structure here
-maj not match the eouivilant C structure.

-- for' code use
--record at sod 8;
WORD : constant integer:=4; -- Assume 4 bwtes Per word.

-- CDFITYPE at O*WORD range 0 ,,31;
-- CDFI at 1*WORD range 0 .. 31;
-- CDUI at 2*WORD ranle 0 .. 31;
-- CRANGE at 3*WORD range 0 0o31;
--CFHIGH at 4*WORD range 0 .. 63;
- CFLOW at 6*WORD range 0 .. 63;
-- CLHIGH at 8*WORD range 0 .. 63;
-- CLLOW at IOSWORD range 0 .. 63i
-CHIN at 12*WORD range 0 .. 32;
--CMAX at 13*WORD range 0. 32;
-- CLNGTH at 14*WORD range 0 .. 32;
-- CeNT at 15*WORD range 0 .. 32;
--LCNEYT at 16*WORD range 0 6. 3;

-..--end recordi

-C allows unconstrained strings, Ada does not. To accomodate the
-existing interface a large string will be used, with a software check
..for the delimiter used bw C.
Procedure MAIN(ARGC : integer; -- number of files

ARGV : string); -- file names

tvPe WHICHFILEERROR is (INPUT, OUTPUT);

end DFIDUIPARSER;

', Package bodw DFI_DUI..PARSER is

Procedure MAIN(ARGC integer;
ARGV STRING) is

PIN longinteder; -- SHOULD BE FILETYPE
POUT I ons-integer; -- SHOULD BE FILETYFPE
PIN-MODE : constant JAMPSINPUT.FILEMODE =JANPSINPUT.INFILE;
POUTNODE : constant JAMF'SOUTPUT.FILENODE :=JAMPSOUTF-UT.INOUTFILE;
FILEBEINGOPENED: WHICHFILEERROR;
SLINE JAMPSINPUT.INPUTLINE;
SCLINE JAMPSINPUT.INPUTLINE;
SONECODE JAMPSINPUT.INPUTLINE;

RPLINE J AMPSINPUT.ACCESSINPUTLINE;
F'DFILINE 1 JAMPSINF'UT.ACCESSINPUT-.LINE;
F'DUILINE JAMPSINPUT.ACCESSINPUT-LINE;

, . FONECODE string(1 .so8);
P .PCLINE string(1. go);
• STRING-END integer;
"STRING-START: integer;

p_ LINECNT integer;
PCODE ACCESS-CODE;
F'PCRE AII ACCESS-CODE;

L.DFt long_-rteger ; -- FILE-INDEXI-- LCURF'OS lor, -irteger ; -- FILEINDEX
LCURTMP long-integer; --FILEINDEX
LCURLOC l onginteser; --FILEINDEX

SL TMPOFF lorginteger ; -- FlILEINDEX

-80

%

4t

*



4 FTEL long-intesr; --FILE-INDEX

POS2 2 ingntegerE;
POS2 integer;

CODELEN : integer;
SIZEMIN : integer;
SIZEMAX : integer;
LOOP2 : JANPS-STUBS.LOOKAHEAD-VALUE;
TENPLONG: long-integer; -- used in integer to long integer

' - conversion.

TEMPINT : integer;
. OUTBUF : character;

COUNT : integer;
INPUT-INDEX : integer;

--**-***********3*** Start of Executable Code 3******$ ** *
begin

if ARGC < 3 then
Put-line('$$3 ERROR ** an input and output file must');

Put-line(lbe named');
return; -- BADFILECOUNT

end if;

-- The delimiters used bw the C interface for unconstrained strings
are scanned for here. Might be better to do it in the JAMPSINPUT

-- Package.
STRINGEND:=I;
STRINGSTART:=1;
while ARO (STRINGEND .. STRINGEND+l) /= /nl loop
STRINGEND:=STRINGEND+I;

end loop;
FILE-BEING-OPENED := INPUT;
JAMPSINPUT.open(PINPINMODEARGV(STRINGSTART .. STRZN6_END),');
STRINGEND:=STRINGEND+2;
STRINGSTART2STRING-END;
while AROV(STRINGEND .. STRING-END+l) /= '/n' loop
STRINGEND:=STRINGSEND+I;

end loop;
FILEBEINGOPENED 2= OUTPUT;
JANPSOUTPUT.open(POUTPOUT-MODEAROV(STRINGSTART .. STRINGEND)O );

-- At this Point, the C code executes a separate OPEN to allow
-- reading from the output file. This does not seem necessarv

-- since the Ada DIRECT-1O Package allows a file to be opened
- - for both reading and writing.

-- 3*3 INITIALIZATION CODE 33
PCODE 2= new code;
PCREAD:= new code;

LCURLOC:=WORDSMAXDFIS;
EJAMPS-OUTPUT.set-index(POUTPLCURLOC);

LINECNT := 0;
PLINE new JAIPSINPUT.INPUT-LINE;

S 81

4%%

*.-*



.7 ._-VW- - --Tot

-- Get the first line of the file. This loop will Process the DFI's

MAt a).~

1loop

-- UNIX files are streams of characters, with logical records delimited
-- bv a single delimiter character specified as */n

. 
For this estimate

-- I am assuming that the implementation of SEOUENTIAL-0 will return
the string as logical records with the *In' stripped off. The

' -- logic which assumes simple stream input with no logical record
Pre-Processing is included if such suPPort is not available.

-- for INPUT-INDEX in 1 .. SLINE'last loop
'a' -- JAMPSINPUT.read(PININCHAR);

-exit when INCHAR = 'In' ;
-- SLINE(INPUTINDEX .. INPUTINDEX) :

-- unchecked-conversion(INCHAR);
-- end loop;

JAMPS_INPUT~rsad(PIN,SLINE);
-- Check for terminatin g condition: End of input file.

if JAMPS-INPUT.ENDOFFILE(PIN) then
JANPSSTUBS.Preof;
Put-line(*Exiting Procedure MAIN');
return; -- NORMAL-TERMINATION;

end if;
4. -- Call the initialization routine

JAMPSSTUBS.INITIAL;
-- Initialize the strings that are being used.

PDFILINE = new JAMPSINPU.INPUTLINE;
PDUILINE = new JANPSINPUT.INPUTLINE;

-- PONECODE null;
- tPCLINE ;null;
..Set the index a indersent the line count.

LCURPOS :=JAMPSINPUT.INDEX(PIN);
LINECNT :=LINECNT + 1;

-- Start extracting the information that we want.
if SLINE(1 .. 1) = 'E' then
PCODE.CDFITYPE : 1;

elsif SLINE(l .. 1) - *C' ther
PCODE.CDFITYPE :- 2;

else
Put-line(' *** ERROR ** DFI twpe must be C or E');
Put(linecnt);
return; -- BADDFITYPE

end if;
-- Convert the ASCII DFI number to an interier.
-- Hotel I decided to handle Possible blanks right here since that
-- is the waw it was done in the C code. It seems more
-- appropriate to handle blanks in the conversion routine.

if SLINE(2 .. 2) 1 ' ' then
SLINE(2 .. 2) := '0;

end if;
-- Pcode.cdfi JAfPSSTUS.ASCII-INTEGER(

unchecked-conversion(SLINE(2 .. 5)),4);
-- Check for valid DFI number.

if Pcode.cdfi < 0 then
Put-line(' *** ERROR ** nonnumeric DFI number');
Put(pcode.cdfi);
Put-line(' line number');
Put(1inecnt);

end if;

82

% - -.Pvxr.2 a .x fa.c.- w - .. .-.VV % ..



if Pcode.cdfi > MAXOPIS than
Put..line(' *3* ERROR *** DFI number out of bounds )
eut(pcode.cdfi)1
put..line(' line number')$
rut(ljnocnt);

* andit;
Convert the DUI number.

if SLINE(6 .. 6) = then
SLINE(6 .. 6) '0-o;

end if;
a -- pcode.cdui :-JAMPS-STUBS.ASCIA-NTEOER(

-- unchecked-.corversion(SLINE(6 9.. 4)
Check for valid OF! number.

if pcode.cdui < 0 then
Put-ljnec *** ERROR *** rnonnumeric DUI number');
Put(pcode.edui);
Put..line(* line number');
put~lirnecnt);

- ".3.end ifi
ViA -- Multipiw the DFI number bv 4 to Not the Proper offset for the index.

-- ldfi := unchecked-.conversior(4 * Pcode.cdfi);
-At this point, the C code flushes out the in core buffers. There is
no eauivilant function in the DIRECT-10 Package.

-Save the current Position of icurloc.
leurtmp :a icurloc;

-Soek to this Position in the output file.
JANPS-OUTPUT.set-index(POUT,lcurloe);

-Look ahead to see if we are readw to Process the codes. Switch on
-the value returned.

LOOP2 2 JAMPS-STUBS.*LOOKAHEAD (0);
INNER-LOOP: loop
case LOOP2 is

when JAMPS-STUBS.ENDFILE =>
JAMPS-STURS.Prttruc(0);
JAI4PS-STUBS .preof$
exit INNER-LOOP;

when JAMPS-STUDS.NE4DFI =

LCURLOc:- JAMPS-OUTPUT.INDEX(POUT).
JAMPS-STUDS.pstruc(O)l

when JAMPS-STUBS.DUINAME
rnull$

when JAIIPS-STUBS.LIT =

JAHP9.STURS. INITIAIL
JAMPS..STUBS.*SEARCH;
JAMPS-STUDS.*PRSTRJC );

when JAIPS-STUBS.CODELINE
CODELENI=0;
P091 -POS2#
PCLINE:=unchckedconversionGETCODE(PLINE);0
while JANPS-.STUS.LOOKAHEAD(0) = JAPSSTIJBS.CODELINE

end POSI - P092 loop
PONECODE:-PCLINE;
PCLINE:-JANPS-.STUBS.CONCATcPONECODE);

end loop;
PCODE.CCNT2=PCODE.CCNT+l;

83

0V---------= q.~.*.*. .*., ~~**%



.44

Vif PCODE.CCNT - 1 then
PCODE.CNIN:sPCLINE'last;
PCODE.CNAXt-PCLINE'last;
null;

else
-- This section had to be re-written to accoaodate the C assignment statement
-- within the IF statement.

SIZEINI-PCLINE'last;
SIZENAX =SIZENIN;
if SIZENIN < PCODE.CMIN then

,enPCODECNIN:-SIZENIN;

end if;
if SIZENAX > PCODE.CNAX then
PCODE.CNAX := SIZEHAX;

end if;
end if;
CODELENI-PCLINE'last +1;
F'CODE.CLNGTH := CODELEN +1;

-- Write the code to the file.
for COUNT in 1 .. CODELEN loop

-- OUTBUF:unchecked-conversion(PCLINE(COUNT .. COUNT));
JANPS-OUTPUT.WRITE(POUTOUTBUF);

end looP$
when JAPSSTUDS.RANGEY ->
hJAPS-STUBS.RANOEXY

-- Not sure if these lines should be counted. Considering the
-- twpe checking on LOOP2, the others case should never occur.

when others =>
Put.line( *** ERROR *** Inapplicable return: value=*);

-- TENP.INT:-unchacked-conversion(LOOP2);
Put(TENPINT);
Put-line(V line-')$
Put(linecnt);

end case;
At this point the C listing checks again for LOOP2 = NEWDFI or LIT

-- The lines are not included here (redundant) and should also be
-- excluded from the count of lines in the C listing.

LOOP2:-JANPS-STUBS.LOOKAHEAD(O);
end loop INNER-LOOP;

end loop MAINLOOPS

HANDLE EXCEPTIONS

exception
when NAME-ERROR I USE-ERROR ->

if FILE-BEING-OPENED = INPUT then
Put-line('*** ERROR ** unable to open *I AROV(STRINGSTART

STRING-END) I I for read');
return; -- BADINPUTPILE

alsif FILEBEING-OPENED = OUTPUT then
Put-line('*** ERROR *8* unable to open I S ARGV(STRINO.START

STRING-END) S * for write')I
returnt -- DADOUTPUTFILE

end if;
end;

end DFIDUIPARSER;

84

* , - . **., -a a% ", -. ." . " , '. ._ , % % % % % % "_ '
- , :" in9 " ------ --- - ---.



I.AI

9, v- 4 ^- 4

n, P

*i ... -*- - - -~ *.. 14.'


